Spacetime and Gravity: Assignment 4 Solutions

November 8, 2013

In what follows, unless otherwise stated, we will use units such that the

speed of light, ¢ = 1.

1.

We are given the line element of a two dimensional hyperbolic space:
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So the metric is:
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and the inverse metric is
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We proceed to calculate the Christoffel symbols of this space by using:
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So the non-vanishing Christoffel symbols are:
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So what are the geodesic equations for this hyperbolic space? We use the
geodesic equation:
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and expand out the repeated indices
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As before, whenever we have a free index (in this case the index ) we can
manually pick it, so pick [ = 1 first,

d*x! , dx? dat 1 dzt dz?
R — =0 17
ds2+21dsds+12dsds (17)
1 1
=>i——-ty— -ty = 0 (18)
Yy Yy
L2 0 (19)
Tr— -y =
Yy
Next, pick [ = 2
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These two equations are the geodesic equations of our hyperbolic space. We
are now set to calculate the Riemann Tensor of the space. We use:

R,y = —0,0%, + 8,15, + T8I, — T4 T (22)
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Now we can calculate the non vanishing components,
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So in order to obtain this in the form Ry, we must lower the = index with the
metric:
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where the last equalities follow from the symmetries of the Riemann tensor.
Now we can contract one index on the Riemann Tensor to calculate the Ricci
Tensor:

Ry, = R® (31)
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So again, we expand on the contracted « indices and will have to pick the
free p, v indices.

R = =010, +0.10,+15,1%, —T5.I'%, (32)
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and picking p =v = 2,
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and finally picking 4 = 1,v = 2 we obtain
Rig = Ryy = —0oT'}, — —02T%, 4+ 01Ty + 0512, = 0 (46)



So writing out the Ricci tensor in matrix form we see,
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and hence

R =—g9uw (48)

as required. This is the consequence of the two-dimensional nature of the space.
In two dimensions the cosmological constant vanishes and thus Einstein’s field
equations read
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in a vacuum. Since R = g"” R,,,, = —2I, then we see that R, = —g,, immedi-

ately.

1 Summary of important concepts

1. The geodesic equations are derived from the variation of the action for the
motion of a free relativistic particle. They are the equations of motion of a
particle which is subjected to a purely gravitational background, i.e. a particle
”falling” through a gravitational field follows geodesics of the spacetime created
by the gravitational source.

2. Remember the important symmetries of the Riemann tensor

Ruvap = Rapuw = —Rupap = —Ryuvpa (50)



