
Spacetime and Gravity: Assignment 1 Solutions

In what follows, unless otherwise stated, we will use units such that the
speed of light, c = 1.

1.

Given the Lorentz transformations,

x′ =
x− vt√
1− v2

t′ =
t− vx√
1− v2

(1)

We show,

−t′2 + x′2 = − (t2 − 2vxt+ v2x2)

1− v2
+
x2 − 2vtx+ v2t2

1− v2
(2)

=
x2 − t2 − v2x2 + v2t2

1− v2
(3)

=
−t2(1− v2) + x2(1− v2)

1− v2
(4)

= −t2 + x2 (5)

We set v = tanh(θ) and make use of the following identity:

1√
1− tanh2(θ)

= cosh(θ) (6)

Then,

t′ =
t− tanh(θ)x√
1− tanh2(θ)

(7)

= (t− tanh(θ)x) cosh(θ) (8)

= t cosh(θ)− x sinh(θ) (9)

And,

x′ =
x− tanh(θ)t√
1− tanh2(θ)

(10)

= (x− tanh(θ)t) cosh(θ) (11)

= x cosh(θ)− t sinh(θ) (12)
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We have derived the Lorentz transformations in terms of the newly intro-
duced θ variable. We proceed to verify the invariance of the interval:

−t′2 = −t2 cosh2(θ)− x2 sinh2(θ) + 2xt cosh(θ) sinh(θ) (13)

x′2 = x2 cosh2(θ) + t2 sinh2(θ)− 2xt cosh(θ) sinh(θ) (14)

and hence

−t′2 + x′2 = −t2(cosh2(θ)− sinh2(θ)) + x2(cosh2(θ)− sinh2(θ)) (15)

= −t2 + x2. (16)

We have seen an example of a very important general principle, the interval
is invariant under Lorentz transformations.

The matrix form of a Lorentz transformation with factors of c restored and
γ = 1√

1− v2

c2

reads (
ct′

x′

)
=

(
γ −vγc
− vγc γ

)(
ct
x

)
. (17)

To see the effect of two successive Lorentz transformations, multiply two
such matrices together

γ

(
1 − vc
−vc 1

)
= γ2

(
1 − v2c
−v2c 1

)
γ1

(
1 −v1c
−v1c 1

)
(18)

= γ1γ2

(
1 + v1v2

c2 −v1+v2c
−v1+v2c 1 + v1v2

c2

)
(19)

= γ1γ2

(
1 +

v1v2
c2

) 1 −
v1+v2

c

1+
v1+v2

c2

−
v1+v2

c

1+
v1+v2

c2

1

 (20)

which is the same as a single transformation with v = v1+v2
1+

v1v2
c2

since

γ1γ2

(
1 +

v1v2
c2

)
=

[(
1− v21

c2

)(
1− v22

c2

)(
1 +

v1v2
c2

)−2]−1/2
(21)

=

[(
1− v21

c2
− v22
c2

+
v21v

2
2

c4

)(
1 +

v1v2
c2

)−2]−1/2
(22)

is the same as

γ =

[
1− v2

c2

]−1/2
=

[
1−

( v1+v2
c

1 + v1v2
c2

)2
]−1/2

(23)

=

[(
1 + 2

v1v2
c2

+
v21v

2
2

c4
− v21
c2
− 2

v21v
2
2

c4
− v22
c2

)(
1 +

v1v2
c2

)−2]−1/2
(24)

=

[(
1− v21

c2
− v22
c2

+
v21v

2
2

c4

)(
1 +

v1v2
c2

)−2]−1/2
. (25)
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There is another way of seeing this. If we put the equations

t′ = t cosh (ζ)− x sinh (ζ) x′ = x cosh (ζ)− t sinh (ζ) (26)

into matrix form then we have(
ct′

x′

)
=

(
cosh (ζ) − sinh (ζ)
− sinh (ζ) cosh (ζ)

)(
ct
x

)
. (27)

This matrix equation allows us to express our primed co-ordinates in terms of
our unprimed co-ordinates. Let’s now perform a second transformation so our
double-primed co-ordinates are given by(
ct′′

x′′

)
=

(
cosh (ζ2) − sinh (ζ2)
− sinh (ζ2) cosh (ζ2)

)(
ct′

x′

)
(28)

=

(
cosh (ζ2) − sinh (ζ2)
− sinh (ζ2) cosh (ζ2)

)(
cosh (ζ1) − sinh (ζ1)
− sinh (ζ1) cosh (ζ1)

)(
ct
x

)
(29)

=

(
cosh (ζ2) cosh (ζ1) + sinh (ζ2) sinh (ζ1) − cosh (ζ2) sinh (ζ1)− sinh (ζ2) cosh (ζ1)
− cosh (ζ2) sinh (ζ1)− sinh (ζ2) cosh (ζ1) cosh (ζ2) cosh (ζ1) + sinh (ζ2) sinh (ζ1)

)(
ct
x

)
(30)

=

(
cosh (ζ1 + ζ2) − sinh (ζ1 + ζ2)
− sinh (ζ1 + ζ2) cosh (ζ1 + ζ2)

)(
ct
x

)
. (31)

We can clearly see that this takes the form of equation (27) with ζ = ζ1 + ζ2.
This means that it is in fact a Lorentz Transformation. The value of v for this
combined Lorentz Transformation is

v = c tanh (ζ) = c tanh (ζ1 + ζ2) = c

(
tanh (ζ1) + tanh (ζ2)

1 + tanh (ζ1) tanh (ζ2)

)
(32)

= c

( v1
c + v2

c

1 + v1v2
c2

)
=

v1 + v2
1 + v1v2

c2
. (33)

If we set v1 = c then v = c+v2
1+

cv2
c2

= c(c+v2)
c+v2

= c, i.e. the combined velocity

is still c, no matter what v2 is. This relativistic velocity addition shows that
nothing can exceed the speed of light.

2.

We are given the energy and momentum Lorentz transformations:

E′ =
E − vp√

1− v2
p′ =

p− vE√
1− v2

(34)

Consider

−E′2 + p′2 =
−E2 − v2p2 + 2vpE

1− v2
+
p2 − v2E2 − 2pvE

1− v2
(35)

=
−E2(1− v2) + p2(1− v2)

1− v2
(36)

= −E2 + p2 (37)
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and define −E2 + p2 = −m2. We boost to a frame in which p = 0 and use
dimensional analysis to re-introduce the missing factors of c. We denote with
[x] the units of the variable x.

We have,

E2 = m2 (38)

and in SI units,

[E]2 = [m]2[c]x (39)

Where x is an unknown power. Writing out the expression explicitly one
obtains:

(Kgm2s−2)2 = (Kg)2(ms−1)x (40)

m4s−4 = (ms−1)x (41)

¿From which we obtain x = 4. We substitute back into our original expres-
sion,

E2 = m2c4 (42)

E = mc2 (43)

and we have derived Einstein’s famous energy equation. N.B. E = −mc2
is also a possible solution but it remains non-physical outside of a quantum
mechanical context.

3.

We are given the line element:

ds2 = gµνdx
µdxν (44)

= −f(y)dt2 + 2f(y)γdxdt+ f(y)dx2 + dy2 + dz2 (45)

from which we can extract the metric:

gµν =


−f(y) f(y)γ 0 0
f(y)γ f(y) 0 0

0 0 1 0
0 0 0 1

 (46)

Now gµν is defined to be the inverse of the metric. So we have to invert the
matrix we previously obtained. We denote f(y) = f in the following. Because
gµν is in block-diagonal form we can invert it block by block. Recall for a general
matrix: (

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
(47)
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Therefore

(
−f fγ
fγ f

)−1
=

−1

f2 + f2γ2

(
f −fγ

−fγ −f

)
(48)

=
−1

f(1 + γ2)

(
1 −γ
−γ −1

)
(49)

And (
1 0
0 1

)−1
=

(
1 0
0 1

)
(50)

so that

gµν =
1

f(1 + γ2)


−1 γ 0 0
γ 1 0 0
0 0 f(1 + γ2) 0
0 0 0 f(1 + γ2)

 (51)

We perform the coordinate transformation

T =
√

1 + γ2t X = x+ γt (52)

and proceed to calculate −dT 2 + dX2.

−dT 2 + dX2 = −(1 + γ2)dt2 + dx2 + γ2dt2 + 2γdxdt (53)

= −dt2 + 2γdxdt+ dx2 (54)

This means that we can express the old line element as

ds2 = −f(y)dT 2 + f(y)dX2 + dy2 + dz2 (55)

and we see that the metric in these new coordinates is diagonal:

g′µν =


−f 0 0 0

0 f 0 0
0 0 1 0
0 0 0 1

 (56)

However we have just calculated that −dT 2 + dX2 6= −dt2 + dx2. The in-
terval isn’t preserved so this is not a Lorentz transformation! (See Qu.1)

4.

The line element is

ds2 = −f(t, x)dt2 + 2g(t, x)dtdx+ h(t, x)dx2 = gµνdx
µdxν (57)

We can proceed to extract the metric, denoting f(t, x) = f ,g(t, x) = g and
h(t, x) = h
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gµν =

(
−f g
g h

)
(58)

Then the inverse metric is

gµν =
1

fh+ g2

(
−h g
g f

)
(59)

To write out the full expressions of the given contractions we make repeated
use of the summation convention.

xµxµ = gνµx
νxµ (60)

= g1µx
1xµ + g2µx

2xµ (61)

= g11x
1x1 + g22x

2x2 + g12x
1x2 + g21x

2x1 (62)

= −ft2 + hx2 + 2gxt (63)

Similarly,

Eµ = gµνE
ν (64)

= gµ1E
1 + gµ2E

2 (65)

⇒ E1 = g11E
1 + g12E

2 (66)

= −fE + gp (67)

⇒ E2 = g21E
1 + g22E

2 (68)

= hp+ gE (69)

Therefore

Eµ = (−fE + gp, hp+ gE) (70)

The method for all such contractions is the same,

Eµx
µ = g1νE

νx1 + g2νE
νx2 (71)

= g11E
1x1 + g12E

1x2 + g21E
2x1 + g22E

2x2 (72)

= −fEt+ gpt+ gEx+ hpx (73)

= −fEt+ g(pt+ Ex) + hpx (74)

and

EνEν = gµνE
µEν (75)

= g1νE
1Eν + g2νE

2Eν (76)

= g11E
1E1 + g12E

1E2 + g21E
2E1 + g22E

2E2 (77)

= −fE2 + 2gpE + hp2. (78)
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Finally,

xµEνx
νEµ = xµEµx

νEν (79)

= (−fEt+ g(pt+ Ex) + hpx)2 (80)

and

xµEνxµEν = xµxµE
νEν (81)

= (−ft2 + hx2 + 2gtx)(−fE2 + 2gpE + hp2) (82)

Note that for these last two contractions we could of explicitly carried out the
summations using the metric components but it was much simpler to rearrange
the expressions into forms which we can recognize by using the commutation
properties of Eµ and xµ.
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1 Summary of Important Concepts

The interval is invariant under Lorentz transformations and hence only those
transformations which leave it invariant are in fact Lorentz.

The summation convention states that:

xµxµ =

d∑
µ=0

xµxµ (83)

where d is the dimension of the system in consideration.

Using the summation convention one can extract the metric out of any line
element.

ds2 = gµνdx
µdxν (84)

Make sure to rearrange contractions into forms that are easily recognized by
making use of commutation relations of variables.
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