
KEY CONCEPTS AND EQUATIONS

What is this ?

This document highlights some key concepts and equations from each week. In addition it

gives pointers to specific sections of the recommended books for further reading. With the

help of the notes you take in class and the recommended reading, you should be able to

explain the meaning of each concept listed here, know the meaning of every symbol in the

equations, including the relevant units and dimensions.

1 Week 1 : Blackbody radiation and the origins of

quantum theory

Reading : Krane Section 3.3. Brandsden-Joachain Section 1.1.

Key concepts and Equations

• What is a Black body ? A black body is an ideal object that absorbs all the radiation

incident on it at any temperature, any wavelength, any angle of incidence. It does not

transmit or reflect any of the incident radiation.

• A black body also emits the maximum amount of radiant energy for a given tempera-

ture.

• The spectral emittance R(λ, T ) is the power radiated per unit area of emitting surface,

per unit small wavelength range around wavelength λ. Thus R(λ, T )dλ is the power

radiated per unit area of emitter in the wavelength range λ to λ+ dλ.

• Planck’s formula for the spectral emittance of a black body. Also called Planck spectral

distribution formula or Planck distribution formula.

R(λ, T ) =
2πhc2

λ5

1

(exp( hc
λkT

)− 1)

where

λ→ wavelength

T → temperature

c→ speed of light

k → Boltzmann’s constant

h→ Planck’s constant

Quiz : What are the dimensions and SI units of R(λ, T ) ?
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• Stefan-Boltzmann Law

P = σT 4

Derivation from Planck Distribution by integrating over wavelengths.

σ = 5.67× 10−8Wm−2K−4.

• Wien’s displacement Law.

λmaxT = b

where the constant b = 2.898× 10−3 m K.

•
c = fλ

• The high frequency (small wavelength) limit (Wien’s approximation)

R(λ, T ) =
2πhc2

λ5
e
−hc
λkT

• The low frequency ( long wavelength ) limit - Rayleigh-Jeans formula.

R(λ, T ) =
2πckT

λ4

• Spectral distribution in frequency space :

R̃(f, T )df = R(λ, T )dλ

Hence, using fλ = c calculate R̃(f, T ).

• Further Reading related to this week’s material

Radiation Heat transfer (Siegel and Howell)

Wikipedia : Kirchhoff’s Law of thermal radiation

2 Week 2 : Blackbody radiation and the origins of

quantum theory

Reading Krane Section 3.1,3.2 ; Bransden-Joachain Section 1.2

• Relation between spectral emittance and energy density :

R(λ, T ) =
c

4
u(λ, T )
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• For a laser beam,

Power per unit area = uc

• The above two equations are closely related. The 1/4 is a geometrical factor which

requires some care.

• Translating between books : R(λ, T ) in Bransden-Joachain is I(λ) in Krane. ρ(λ, T )

in Bransden-Joachain is u(λ) in Krane.

• The Rayleigh-Jeans derivation :

(A) Modes for waves in a box of size L, with conducting walls. E is zero at the

boundaries.

E = sin(
nxπx

L
) sin(

nyπy

L
) sin(

nzπz

L
)

where nx, ny, nz are natural numbers, i.e belong to the set {0, 1, 2, 3, · · · }.
(B) Number of modes in wavelength range (λ, λ+ dλ), including factor of 2 for polar-

ization

8πL3dλ

λ4

Average energy per mode kBT .

C) Hence energy per unit volume per unit wavelength range ;

u(λ, T ) =
8πL3

λ4
× kBT

(D) Then use R = uc
4

and simplify to get R(λ, T ) = 2πckBT
λ4 .

• Classical formula for average energy

< E >=

∫∞
0
Ee

−E
kT dE∫∞

0
e
−E
kT dE

• Useful rewriting. With β = 1
kT

< E >=

∫∞
0
Ee−βE∫∞

0
e−βEdE

= − d

dβ
Log

(∫ ∞

0

e−βEdE

)
• Planck’s modification : Energy discretized.E = nε0.

< E >=

∑∞
n=0 nε0e

−nβε0∑∞
n=0 e

−nβε0
= − d

dβ
Log

(
∞∑

n=0

e−βnε0

)
• For further reading on derivation of the mode counting formula see, for example,

Chapter 9 of the book by Reif “Fundamentals of statistical and thermal physics”
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3 Week 3 : Review of electromagnetic waves, includ-

ing Poynting vector + Photo-electric effect

Reading

Krane Section 3.1 : Light as waves - Review of Electromagnetic waves.

Krane Section 3.2 : Light as photons - Photo-electric effect.

Bransden-Joachain Section 1.2 :

Equations describing the ~E, ~B fields for a plane wave, Poynting vector, Intensity from

Poynting vector (including time-averaging), Plane wave-fronts.

Photo-electric effect. work function. Stopping potential. The equations

hf − φ = Kmax

Kmax = eVs

φ = hfc

Cutoff frequency (threshold frequency) in photo-electric effect - explained by quantum physics

but not classical physics.

4 Week 4 : More on particle-like properties of light

- Compton scattering ; Interference; Wave-particle

duality

Reading : Krane Section 3.4-3.6 and 3.1 ; Feynman Lectures Volume 3 - Chapter 1,2.

Compton scattering : Photon (e.g. X-ray) scatters off a loosely bound electron.

Expectation from wave picture of light : Intensity in direction of incoming wave decreases,

frequency unchanged.

Photon picture leads to an increase in wavelength of outgoing photon, due to energy conser-

vation

Energy and momentum conservation equations

Derivation of

λ′ − λ =
h

mec
(1− cos θ)

Bremsstrahlung. Electrons accelerated through a positive potential difference ∆V . Then

deceleration through interaction with matter. Energy delivered to photons. Minimum wave-

length :

hc

λmin

= e∆V
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Maxwell’s equations and EM waves. The equations relating frequency and wave-vector for

a wave propagating in general direction. Wave-vector ~k = (kx, ky, kz).

ω2 = c2(k2
x + k2

y + k2
z)

λ =
2π

k
=

2π√
k2

x + k2
y + k2

z

Photon energy, momentum

E = ~ω = hf

~p = ~~k

for photons where ~ = h
2π

.

Superposition property of the solutions to Maxwell’s equations.

Revisiting interference : Young’s double slit experiment. Bright fringes at :

yn =
nλD

d

5 Week 5 : Wave nature of matter and diffraction

Reading : Krane Chapter 4 on wave nature of matter + Krane Section 3.1 ( X-ray

diffraction and Bragg’s Law) +. Bransden and Joachain Section 1.6

De Broglie’s formula.

λ =
h

p

The formulae from relativity

p = γmv

E = γmc2

K = E −mc2 = (γ − 1)mc2

The non-relativistic limit : v/c << 1.

Equivalently K << mc2.

The ultra-relativistic limit : v close to c ; γ >> 1 or K >> mc2.

Principle of superposition and Linearity of equations :

If ~E(1) and ~E(2) are two solutions of

∇2 ~E =
1

c2
∂2 ~E

∂t2

then the ~E(1) + ~E(2) is also a solution.
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Young’s double slit interference pattern as an application of superposition principle. Deriva-

tion of

yn =
nλD

d

Single slit diffraction pattern : Minima at

a sin θ = nλ

This shows that a has to be comparable to λ for observable diffraction

Multi-slit diffraction pattern. The n’th order maximum as

d sin θ = nλ

The Davisson-Germer experiment : electron diffraction

Futher Reading : Bragg’s Law - X-ray diffraction.

One photon double-slit interference experiment.

6 Week 6 : Wavepackets and Heisenberg Uncertainty

Reading : Chapter 4 of Krane. Chapter 2 (and Appendix) of Bransden and Joachain.

• Electron 2-slit experiment and interference. Photon interfence : superpose E(1), E(2)

solutions to linear Maxwell’s equations and I ∝ E2. Electron interfence : Superpose

Ψ1)(x, t),Ψ(2)(x, t) - solutions to linear equations of QM ( mention Schrodinger to be

studied later).

• Ψ(~x, t) is complex, and Ψ∗Ψ is a probability density. In one dimensional case Ψ(x, t).

If a particle is described by wavefunction Ψ(x, t), then the probability of finding the

particle in the region between x and x+ dx is Ψ∗(x, t)Ψ(x, t)dx.

• In two slit experiment, we add the wavefunctions due to the two slits

Ψ = (Ψ1 + Ψ2)

Ψ∗Ψ = Ψ∗
1Ψ1 + Ψ∗

2Ψ2 + Ψ∗
1Ψ2 + Ψ∗

2Ψ1

The probability density is NOT the sum of the probability densitites due to the two

slits. Hence the maxima and minima of the interference pattern.

• The wavefunction for a free particle of definite wavenumber.

Ψfree(x, t) = Aei(kx−ωt)

for some constant A, and p = ~k = h
λ

( de Broglie) with E = hf = ~ω. Motivated

by de Broglie equation and Planck/Einstein equations. Later we will see that it solves

the Schrodinger equation for free particle.
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• Observe Ψ∗Ψ = A∗A Uses eiθ(eiθ)∗ = eiθe−iθ = 1 for any real θ. Probability density

independent of position - equallly likely to be anywhere. First sign of Heisenberg

Uncertainty, which implies that, for a wavefunction where momentum is completely

certain, the position is completely uncertain.

• Definition of a normalized wavefunction.

• Observe, using formula for Ψfree(x, t), that

−i~ ∂

∂x
Ψfree(x, t) = ~kΨfree(x, t) = pΨfree(x, t)

This is an example of a general correspondence in Quantum Mechanics :

p↔ −i~ ∂

∂x

• Start studying Gaussian wave-packets to describe localised objects. Sketch the proba-

bility density as a function of x. Then Calculate < x >,< x2 >,∆x.

• The Gaussian wavepacket

ψk0,d(x) =
1

π1/4
√
d
eik0x− x2

2d2

Expectation values

< x >=

∫ ∞

−∞
ψ∗k0,d(x) x ψk0,d(x)

< x2 >=

∫ ∞

−∞
ψ∗k0,d(x) x

2 ψk0,d(x)

< p >= −i~
∫ ∞

−∞
ψ∗k0,d(x)

∂

∂x
ψk0,d(x)

< p2 >= −~2

∫ ∞

−∞
ψ∗k0,d(x)

(
∂

∂x

)2

ψk0,d(x)

• Hence ∆x∆p = ~
2

for Gaussian wave-packets. And ∆x∆p ≥ ~
2

for general wave-

packets. Hesienberg-Uncertainty principle - A fundamental limitation on accuracy of

simultaneous measurements of x, p. Some examples with macroscopic and microscopic

objects.

7 Week 8 : Heisenberg Uncertainty Principle and Ap-

plications; Complementarity

Reading : Chapter 4 of Krane. Chapter 2 ( and Appendix ) of Bransden and Joachain.
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• Heisenberg Uncertainty Principle (HUP) continued.

∆px∆x ≥
~
2

∆py∆y ≥
~
2

∆pz∆z ≥
~
2

∆E∆t ≥ ~
2

• HUP in terms of wavelengths :

∆x∆λ ≥ 1

4π
λ2

• Application of HUP to single slit experiment. Heisenberg uncertainty explains the

spread in directions of outgoing particles from the slit.

• Application of HUP to double slit experiment. Measurement of position of particle as

it is going through the slits - if it has enough precision to distinguish which slit particle

goes through, then it produces an uncertainty in momentum large enough to destroy

the interference pattern. This is complementarity : cannot simultaneously observe the

wave property of interference and the trajectory of the particle.

• In Quantum mechanics, we have particles, but not particle trajectories. This is related

to the quantum mechanical wave-behaviour of particles. In classical mechanics, the

state at a given time is described by (x(t), p(t)) equivalently by (x(t), ẋ(t)). In quan-

tum mechanics, the state is described by a wave function Ψ(x, t). The properties of

waves imply the Heisenberg uncertainty principle : positions and momenta cannot be

determined with certainty at a given time.

• Energy-time uncertainty relation : Relating lifetimes and widths of particles.

• Diffraction limit of microscopes. Heisenberg’s thought experiment - The Heisenberg

microscope. (see Bransden-Joachain page 70).

• Group Velocity of de Broglie Waves

vg =
dω

dk

Using the equations

E = ~ω = γmc2

p = ~k = γmv

we can show that vg = v : group velocity is equal to particle velocity.

Some further reading : Experimental verification of Heisenberg uncertainty relation for hot

Fullerene molecules by Nairz, Arndt, Zeilinger - available online ( Google it).
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8 Week 9: Quantum Postulates and Schrodinger’s

Equation

Reading : Chapter 5 of Krane + Parts of Chapter 3 and 5 of Bransden and Joachain.

• Postulates of quantum physics ( Reading - Bransden and Joachain - Chapter 5 ).

P1. An ensemble of systems is described by a wavefunction. For a particle in one

dimension, the wavefunction is a function of x, t, written as Ψ(x, t). Discussion :

– Indeterminacy and ensembles - recall single slit or double slit experiment.

– normalization

– cΨ describes same physics as Ψ for any complex number c.

Contrast with classical mechanics where classical state is described by (x(t), ·x(t)).
Newton’s equations allow us to calculate the future positions and velocities, given

the initial positions and velocities. Schrodinger equation allows us to calculate the

evolution in time of the wavefunction.

P2. Principle of superposition. If Ψ1 and Ψ2 are wavefunctions for a system, then

c1Ψ1 + c2Ψ2 is another wavefunction.

P3. Observables A correspond to operators Â.

x-momentum, px → p̂x : ψ(x, t) → −i~∂ψ(x, t)

∂x
position, x→ x̂ : ψ(x, t) → xψ(x, t)

Energy, E → Ê : ψ(x, t) → i~
∂ψ(x, t)

∂t

These equations - applied to ei(kx−ωt) describing a wave propagating in the x-direction

- allow us to recover de Broglie’s equations :

E = ~ω
p = ~k

now as applications of the general framework of quantum mechanics.

The operators corresponding to observables correspond to lnear hermitian operators.

Linear means that :

Â(c1Ψ1 + c2Ψ2) = c1(ÂΨ1) + c2(ÂΨ2)

for aribtrary constants c1, c2. You will see mathematical definition of hermitian in

QMB and MT3.
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P4. Operators, expectation values, eigenvalues.

Expectation value of observable A

< A >=

∫
Ψ∗ÂΨ∫
Ψ∗Ψ

Eigenvalue equation for operator Â

ÂΨa = aΨa

Ψa is an eigenfunction or eigenstate. a is an eigenvalue. In the state ψa the measured

value of the observable A.

Linear hermitian operators have real eigenvalues.

Born Rule If we have Ψ = c1Ψa1 + c2Ψa2 where

ÂΨa1 = a1Ψa1

ÂΨa2 = a2Ψa2

i.e Ψa1 ,Ψa2 are eigenfunctions of an operator Â with distinct eigenvalues a1, a2 ( i.e

a1 6= a2), then a measurement of A can give either a1 or a2. The respective probabilities

P1, P2 are :

P1 =
|c1|2

|c1|2 + |c2|2

P2 =
|c1|2

|c1|2 + |c2|2

P5. The collapse of the wavefunction. If Ψ = c1Ψa1 + c2Ψa2 as above (in P4) is

the quantum state of a system, then two possible values for measurement of A are

a1, a2. IF at time t0, the measured value if a1, then the wavefunction immediately

after measurement is Ψa1 . If the measured value at time t0 is a2, then the wavefunction

immediately after is Ψa2 .

• The time-dependent Schrodinger’s equation for a non-relativistic particle in presence

of potential energy function V (x):

−~2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) = i~

∂Ψ(x, t)

∂t

• The time-independent Schrodinger equation

−~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x)

This is used to calculate the possible energy levels of a system.

• Free Particle in an infinite potential well. Derivation of energy level formula

En =
n2h2

8mL2

( See Krane section 5.4).
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9 Week 10 :Particle in a box - illustrating the princi-

ples of Quantum Physics.

Reading : Krane Chapter 5, Parts of Chapter 3 and 5 of Bransden and Joachain.

• Recall that ψn(x) are eigenfunctions of the Hamiltonian operator (which is the energy

operator expressed in terms of position and momentum operators).

Ĥψn = Enψn

Ĥ =
−~2

2m

∂2ψn

∂x2

Equivalently

−~2

2m

∂2ψn(x)

∂x2
= Enψn(x)

where

En =
n2h2

8mL2

• The normalized energy eigenfunctions :

ψn(x) =

√
2

L
sin(

nπx

L
)

• Orthogonality : ψn, ψm are orthogonal for n 6= m, i.e.∫
ψ∗nψmdx = 0

• If we have a superposition of states

ψ(x) = cmψm + cnψn

the norm of ψ can be shown to be∫
dxψ∗(x)ψ(x) = |cn|2 + |cm|2

To normalize ψ, we define ψ̂, related to ψ by an overall constant factor

ψ̂(x) =
1√

|cn|2 + |cm|2
ψ

Check that ψ̂ is normalized, i.e has unit norm.
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• Use the time-dependent Schrodinger equation to calculate the time-dependence of en-

ergy eigenstates. Using

Ψ(x, t = 0) = ψn(x)

as the “initial condition” we guess that the time dependent wavefunction is

Ψ(x, t) = ψn(x)f(t)

Sustitute in the time-dependent Schroedinger equation and use the initial condition to

get

Ψ(x, t) = ψn(x)e
−iEnt

~

• If the initial condition is a superposition of energy eigenstates

Ψ(x, t = 0) =
∑

n

cnψn(x)

then

Ψ(x, t) =
∑

n

cnψn(x)e
−iEnt

~

• For superpositions such as ψ = cmψm + cmψn, we discussed how to calculate the

expectation value of the energy

< E >=
|cm|2

|cn|2 + |cm|2
Em +

|cn|2

|cn|2 + |cm|2
En

• The coefficients of Em and En are the probabilities for finding Em and En when a

measurement of energy is made - This is an application of the Born rule which gives

the probabilities of measurements of different eigenvalues.

• Calculation of uncertainties ∆x and ∆p in eigenstate ψn(x) are developed in exer-

cises/homeworks. These uncertainties are consistent with the Heisenberg uncertainty

relation.

10 Week 11 : Simple Harmonic Oscillator

Reading : Krane Sec. 5.5 ; Br and Jo Chapter 4 - see pictures of probability distributions

and classical limit ; Dr Russo notes (under the heading “textbooks” in QMPLUS) - see

oxygen molecule - for discussion of quantum mechanics of molecule vibrations also see sec

1.3 and 9.4 of Krane.
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• Review of the classical mechanics of simple harmonic oscillator. Schrodinger’s equation.

Energy spectrum. Ground state wavefunction - start with ansatz Be−ax2
and determine

a in terms of k,m, ~ and the ground state energy. Excited states from ladder operator.

• Hamiltonian for oscillations around x = x0 with minumum potential energy U0. Change

of variables and wavefunctions centred on x0.

• Properties of the energy eigenfunctions under the parity operation P

Pψ(x) = ψ(−x)

Using parity to deduce that < x >= 0 for all the energy eigenstates.

• Calculating ∆x∆p for the ground state.

• Time-dependent wavefunctions. Deriving oscillating < x > and < p > in a superposi-

tion of energy eigenfunctions.

11 Week 12 : Quantum Mechanics of atoms and molecules

• Bohr model of the atom

En = − mee
4

8ε20h
2n2

See Krane section 6.5 for the derivation, as well as the successes and failures of the

Bohr model.

• Rotational and Vibrational modes of molecules ; Specific heat capacities. See Krane

section 1.3, section 9.4 and 9.5.

• Ehrenfrest theorem (no proof given in this course)- See Bransden and Joachain section

3.4 for the three-dimensional version.

d < x >

dt
=
< p >

m

can be shown using

< x >=

∫
Ψ∗(x, t)xΨ(x, t) dx

< p >= −i~
∫

Ψ∗(x, t)
∂

∂x
Ψ(x, t) dx(

−~2 ∂
2

∂x2
+ U(x)

)
Ψ(x, t) =

i~∂Ψ(x, t)

∂t
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The integrals are understood to be from −∞ to ∞. The wavefunctions vanish at

infinity, so we can use integration by parts to simplify the answer. Using similar steps,

we can show that

d

dt
< p >= − <

dU

dx
>

The LHS is

d

dt
< p >=

d

dt

∫
Ψ∗(x, t)

(
−i~∂Ψ(x, t)

∂x

)
= (−i~)

∫
∂Ψ∗

∂t

∂Ψ(x, t)

∂x
− (i~)

∫
Ψ∗(x, t)

∂2Ψ(x, t)

∂x∂t

=

∫ (
− ~2

2m

∂2

∂x2
+ U(x)

)
Ψ∗∂Ψ(x, t)

∂x
−
∫

Ψ∗(x, t)
∂

∂x

(
− ~2

2m

∂2

∂x2
+ U(x)

)
Ψ

The terms involving third derivatives with respect to x cancel after using partial inte-

gration twice. We are left with

d

dt
< p >=

∫
Ψ∗U(x)

∂Ψ

∂x
−Ψ∗ ∂

∂x
(UΨ)

= −
∫

Ψ∗∂U

∂x
Ψ

= − <
∂U

∂x
>

This is, at the level of quantum expectation values, the statement that the force is

equal to rate of change of momentum.

• A math fact we use in verifying that guesses such as e−ax2
or xe−ax2

solve the SHO

schrodinger equation is that if a polynomial function of x vanishes for all x, then all the

coefficients vanish. This is intuitively obvious and can be used in this module without

proof, but here, just for clarity, we will explain a proof of this math fact. Take for

example

α1 + α2x = 0

Assume that α1, α2 are independent of x. By setting x = 0 we deduce α1 = 0. Taking

a derivative with respect to x, and then setting x = 0 proves that α2 = 0. Similarly

we can show that if this equation

α1 + α2x+ α3x
2 = 0

holds for all x, then all the x-independent quantities, α1, α2, α3 are zero. To prove this

: First set x = 0 to prove that α1 = 0. Then take one derivative, followed by setting

x = 0 : this shows that α2 = 0. Of we take 2 derivatives before setting x = 0, we

see that α3 = 0. This clearly generalizes to polynomials of order n where you have

α1, · · · , αn.
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