QUANTUM MECHANICS A (SPA-5319)

Tunneling Through an Arbitrary Barrier

Consider a rectangular barrier of height V, being approached from the left by a
particle with energy E < V,, so that classically it cannot pass through:
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Figure 1: A free particle is incident on a rectangular barrier with energy less than the height of
the barrier, E < V.

In quantum mechanics we have to find the wave function by solving the TISE outside
and inside the barrier. Outside, V' = 0 and we take the wave function to be a plane de Broglie
wave. Inside the barrier we have V =V, > E, so the TISE is
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which can be rearranged in the usual way to give,
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= +Kk2 Y where, k= ’Zh—:l (Vo — E)

As (Vo — E) is positive, k is real, and the equation has exponential rather than oscillatory

solutions:
P = AeT** + Bet**

It can be shown that for high and wide barriers (kL > 1) the second term can be neglected
(see e.g. Bransden & Joachain, p.150) and so the wavefunction has the simple form of a
decaying exponential inside the barrier. Even for a wide barrier the exponential has not
decayed to zero when we reach the end of the barrier, x = L. The Born interpretation then



immediately tells us that the probability of finding the particle on the other side of the barrier
is not zero: the probability that the particle tunnel through fromx =0tox = L is

TooL = [W(x = L)|? o e~2KL where k= /Zh—rj(vo —E)

We recognise this as the earlier approximation obtained for the classically strongly forbidden
case; here our derivation was simpler, but a bit less honest — a quick fix!

Continuity of the wave function, of course, requires that the free transmitted de
Broglie wave joins on smoothly to the exponential tail at x = L with much smaller amplitude
than the incident one: To extend our theory to barriers of any shape (see Figure 2) we simply
break up the potential into narrow rectangular strips, the i-th one having width L; and height
Vi. Thus, if the particle has succeeded in tunneling as far as the i-th strip, the probability that
it then tunnel through this strip is approximately,
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Thus, the probability for a particle with energy E to traverse the entire barrier from x = a to
X = Db, is the product of the independent probabilities for traversing each successive
rectangular forbidden barrier:
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where we have used the fact that the exponents add in a product. Finally in the limit where
the strips become infinitesimal, L; = dx, N = oo, the label i becomes the continuous label x,
i.e. V; - V(x), and the sum becomes an integral, ; — [ dx. This gives

1
T(E) = Ae~%®) where the Gamow factor is G(E) = 2 (Zh—zl)z fab (V(x) — E) dx

This derivation of Gamow’s famous formula has been rather cavalier, but is essentially
correct: the approximation is known as the WKB approximation (Wentzel, Kramers, Brillioun,
who were the originators of the basic method), and applies to potentials that vary slowly
enough; it is an example of a semi-classical approximation although tunneling itself is very far
from a classical phenomenon. The proportionality constant A is, in fact, a slowly varying
function of E, A = A(E).
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Figure 2: potential barrier broken up into N narrow rectangular barriers of width L; and height
V;. The region a — b is classically forbidden to the particle with energy E, where V(a) =
V(b) = E. The points a and b are the so-called classical turning points.



