
QUANTUM MECHANICS A (SPA-5319) 
 

Tunneling Through an Arbitrary Barrier 
 

 Consider a rectangular barrier of height V0 being approached from the left by a 
particle with energy E < V0, so that classically it cannot pass through:  

 

       

Figure 1: A free particle is incident on a rectangular barrier with energy less than the height of 
the barrier, 𝐸 <  𝑉0. 

 

In quantum mechanics we have to find the wave function by solving the TISE outside 
and inside the barrier. Outside, 𝑉 = 0 and we take the wave function to be a plane de Broglie 
wave. Inside the barrier we have 𝑉 = 𝑉0 > 𝐸, so the TISE is  
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As (𝑉0 − 𝐸) is positive, 𝜅 is real, and the equation has exponential rather than oscillatory 
solutions:  

 ψ = Ae−κx + Be+κx  

 
It can be shown that for high and wide barriers (𝜅𝐿 ≫ 1) the second term can be neglected 
(see e.g. Bransden & Joachain, p.150) and so the wavefunction has the simple form of a 
decaying exponential inside the barrier. Even for a wide barrier the exponential has not 
decayed to zero when we reach the end of the barrier, x = L. The Born interpretation then 



immediately tells us that the probability of finding the particle on the other side of the barrier 
is not zero: the probability that the particle tunnel through from 𝑥 = 0 to 𝑥 = 𝐿 is 
  

 T0→L = |ψ(x = L)|2 ∝ e−2κL                 where     κ = √
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We recognise this as the earlier approximation obtained for the classically strongly forbidden 
case; here our derivation was simpler, but a bit less honest – a quick fix!  

Continuity of the wave function, of course, requires that the free transmitted de 
Broglie wave joins on smoothly to the exponential tail at 𝑥 = 𝐿 with much smaller amplitude 
than the incident one: To extend our theory to barriers of any shape (see Figure 2) we simply 
break up the potential into narrow rectangular strips, the i-th one having width Li and height 
Vi. Thus, if the particle has succeeded in tunneling as far as the i-th strip, the probability that 
it then tunnel through this strip is approximately,  
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Thus, the probability for a particle with energy E to traverse the entire barrier from x = a to 
x = b, is the  product of the independent probabilities for traversing each successive 
rectangular forbidden barrier:  
 

 𝑇𝑎→𝑏 = 𝑇1𝑇2 … 𝑇𝑖 … 𝑇𝑁 
   

 𝑇 ∝ e−2Σi=1
N κiLi  

  
where we have used the fact that the exponents add in a product. Finally in the limit where 
the strips become infinitesimal, 𝐿𝑖 → 𝑑𝑥, 𝑁 → ∞, the label 𝑖 becomes the continuous label 𝑥, 
i.e. 𝑉𝑖 → 𝑉(𝑥), and the sum becomes an integral, Σi → ∫ dx. This gives  
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This derivation of Gamow’s famous formula has been rather cavalier, but is essentially 
correct: the approximation is known as the WKB approximation (Wentzel, Kramers, Brillioun, 
who were the originators of the basic method), and applies to potentials that vary slowly 
enough; it is an example of a semi-classical approximation although tunneling itself is very far 
from a classical phenomenon. The proportionality constant A is, in fact, a slowly varying 
function of 𝐸, 𝐴 = 𝐴(𝐸).  

                                                                 



 
 
Figure 2: potential barrier broken up into N narrow rectangular barriers of width Li and height 
Vi. The region a → b is classically forbidden to the particle with energy E, where V(a) =
V(b) = E. The points a and b are the so-called classical turning points.  
 


