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QUANTUM MECHANICS A (SPA-5319) 
 

Probability Currents 

 

Let us consider the probability density        txtxtxtxP ,,,,
2

  . So 

far we have encountered many cases where it is time independent, i.e. where it 
represents a stationary state, but what about the general case? In general we can 
consider the rate of change of probability density, which we do not expect to be zero: 
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Let us consider an example of the time independent eigenstate yielding a constant 
probability density: 
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This is in contrast to what happens for a linear combination of such states. For 
example, consider the state: 
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where, using      txtxtx ,,,
2

  , we get  
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or, more simply,  
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where /)( 1221 EE  . This results in the following expression: 
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which is in general non-zero. 
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More generally, the form of the rate of change of probability density is given by 
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Using the TDSE the quantities 
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 can be rewritten as follows: 
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Substituting these into the definition for the rate of change of probability density 
gives: 
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The rate of change of probability density,
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, is therefore related to a probability 

current, j(x,t), by the simple relation: 
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where the current itself is simply given by 
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By using the momentum operator, 
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 ˆ , this current can be rewritten as 
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For a de Broglie matter wave we have:  
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 ,  and so the current becomes: 
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where A represents a number density (not a normalisation constant in this case,  as 
the de Broglie matter wave is not normalisable). 
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To summarise: The rate of change of probability density is equal to minus the gradient 
of the current: 
 

   
x

txj

t

txP








 ,,
 

 
 
The current itself can be thought of as the amount of probability passing a given point: 
 
 
 
 
 
 
 
 
 
 

 

The probability current is given by     P
m
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, , and for a de Broglie wave 
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Reflection and Transmission – Scattering: Consider a beam incident from the left to 
the right towards the potential barrier shown below: 
 
 
 
 
 
 
 
 
 

Conservation of particles dictates: dtransmittereflectedincident jjj  . We can also define the 

reflection (R) and transmission (T) coefficients as: 
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Of course, R + T = 1, due to the conservation of probability. 
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The potential step 
 
Consider a beam of particles incident from the left on the potential step shown below: 
 
 
 
 
 
 
 
 
 
 
 
Case I:  E > V0 
 

In region 1, V = 0 and 
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This gives the solutions: 

 

  ikxikx BeAex   

 
which can be identified as the incident and reflected waves. 
 

In region 2, V = V0 and 
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This gives  the solutions: 
 

  iqxiqx DeCex   

 

which we reduce to:   iqxCex   as there is no source to the right of the step. 
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We can therefore write the probability currents as: 
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which result in 
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We can now derive analytical expressions for these by applying boundary conditions 
at x = 0: 
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CASE II: E < V0 
 

In region 1, V = 0, which is the same as before, namely   ikxikx BeAex  . 

 

In region 2, V = V0 and 
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giving solutions:   xx DeCex     (decaying and rising exponentials), which 

reduces to   xCex    (as the wavefunction must tend to zero at infinity). 

 
Let us now consider the probability density in the two regions. In region 1 we have 

  ikxikx BeAex  , and therefore kxABBA 2cos2222
  . In region 2 

we have   xCex   , and therefore xeC  222   . 

 
That corresponds to a stationary wave pattern in region 1 (due to the interference of 
the incident and reflected particles), and an evanescent decay in the classically 
forbidden region 2. 
 


