QUANTUM MECHANICS A (SPA-5319)
Probability Currents

Let us consider the probability density P(X,t): |‘P(x,t)2 = ‘P*(X,t)‘P(X,t). So

far we have encountered many cases where it is time independent, i.e. where it
represents a stationary state, but what about the general case? In general we can
consider the rate of change of probability density, which we do not expect to be zero:

oP(x,1)
ot

Let us consider an example of the time independent eigenstate yielding a constant
probability density:

iE,t

P(xt)=y,(xe "

results in
[P (xt) =¥ (% OF(x,t)=[w(x)’
with Pt _y.
ot

This is in contrast to what happens for a linear combination of such states. For
example, consider the state:

where, using |‘I’(x,t]2 =" (x,t)¥(x,t), we get
[Pt =[p|” + || +2Rel; (x, O, (x,t)]

or, more simply,
[POt) =] + | + 20 (X, (X)cos(e,ot)

where @, , = (E, —E,)/#. This results in the following expression:

oP(x,1)
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which is in general non-zero.



More generally, the form of the rate of change of probability density is given by

oP(x.t) _ a(¥" (x )¥(x.t)) _ S s
at ot ot ot
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Using the TDSE the quantities %—T and 7 can be rewritten as follows:
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Substituting these into the definition for the rate of change of probability density

gives:
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The rate of change of probability density, B is therefore related to a probability
current, j(xt), by the simple relation:
oP(x.t) _ di(xt)
ot OX

where the current itself is simply given by

j(x,t):—i—h{\y*a—w—wai}.
2m [ ox ox
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By using the momentum operator, p = _'ha_’ this current can be rewritten as
X

i(x,t)= % o pw - wpw = % Re[¥’ p]

i
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For a de Broglie matter wave we have: ¥(x,t)= Ae" and so the current becomes:

i) = 2|7 = viA” = B

m

where A represents a number density (not a normalisation constant in this case, as
the de Broglie matter wave is not normalisable).



To summarise: The rate of change of probability density is equal to minus the gradient
of the current:

oP(x,t) _ di(xt)

ot OX

The current itself can be thought of as the amount of probability passing a given point:

ja jb

The probability current is given by j(x,t)= 1 Re[‘P*If"P], and for a de Broglie wave
m

i Px
with ¥(x,t) = Aeh( ) it is simply

O

Reflection and Transmission — Scattering: Consider a beam incident from the left to
the right towards the potential barrier shown below:
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Conservation of particles dictates: J;,qent =

Jreflected + Jtransmitteﬂ .Wecan also deflne the

reflection (R) and transmission (T) coefficients as:
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Of course, R+ T =1, due to the conservation of probability.



The potential step

Consider a beam of particles incident from the left on the potential step shown below:

V=Vo
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V=0
x=0
Casel: E> Vp
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Inregion 1, V=0and — ;l_m d dl/):gx) +0 = Ew(x) becomes
d’w(x)  2mE ) 2mE
= w(x)=—ky(x) where Kk = >
dx h
This gives the solutions:
w(x)= Ae™ +Be™
which can be identified as the incident and reflected waves.
2 2
In region 2, V = Vpand _;l_m d dV)ZSX) +V,p(x) = Ey(x) becomes
2 — p—
d d‘//gx) __ Zm(iz VO)(//(X): —q?y(x) where ¢ = Zm(iz Vo)
X

This gives the solutions:
w(x)=Ce™ + De ™

which we reduce to: w(x)=Ce™ as there is no source to the right of the step.



We can therefore write the probability currents as:
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which result in
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We can now derive analytical expressions for these by applying boundary conditions
atx=0:

v being continuous gives: A+B=C :>1+%:%
d_g// continuous gives: kA-kB=qC = 1—E = EE
dx A kA

2
which together yield E = 2k , and therefore T = 4qk > and R= k;q .
A k+q (k+q) k+q

CASEI: E<VWp

In region 1, V = 0, which is the same as before, namely y/(x): Ae™ + Be ™,

2 2
In region 2, V'= Vo and _;l_mddLg)()+Vo‘//(x)= E‘//(X) becomes
X
dv):g ) (hoz )‘//(X)=K2l//(x) where &= | SHCL =

giving solutions: t,//(x):Ce*"X+De"X (decaying and rising exponentials), which

reduces to 1//(x) =Ce™ (as the wavefunction must tend to zero at infinity).

Let us now consider the probability density in the two regions. In region 1 we have
w(x)= Ae™ +Be™, and therefore |1//|2 ="y = A’ + B? + 2AB cos 2kx.. In region 2

we have y(x)=Ce™, and therefore |1//|2 —y'y = |C|2e’2"x.
That corresponds to a stationary wave pattern in region 1 (due to the interference of

the incident and reflected particles), and an evanescent decay in the classically
forbidden region 2.



