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QUANTUM MECHANICS A (SPA-5319) 

 

The Finite Potential Barrier 

Let us consider a beam of particles of energy E < V0 incident upon a rectangular potential 

barrier of height V0 and width L (see figure 1). 

 

Figure 1: A beam of particles meets a potential barrier  that it has insufficient energy to 

overcome classically. 

The classical view of this arrangement is that as the particles are incident from the left, and 

as they have insufficient energy to overcome the barrier, there will be no particles found to 

the right of the barrier (ever).  The quantum mechanical view is completely different. We have 

already encountered examples where in Quantum Mechanics there is a finite, non-zero 

probability of detecting a particle or system in a clasically forbidden region (e.g. the finite 

square well or the QHO). What we will derive in this section is an exact result for the tunneling 

transmission through a rectangular barrier. Quantum Mechanical tunnelling is a real, 

observed phenomenon, and there exist many devices (such as the scanning tunnelling 

microscope or organic light emitting diode) that rely on this phenomenon to function. 

We can begin the analysis of this set-up by solving the time-independent Schrödinger 

equation in the three regions indicated in figure 1. 

In region 1:    V = 0,            
𝜕2𝜓

𝜕𝑥2 =  −𝑘2𝜓 ,   𝑘 = √
2𝑚𝐸

ћ2  ,  𝜓1(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 

Here we can identify the two matter waves found in the solution as an incident (right 

travelling) and reflected (left travelling) wave. 

In region 2:   V = V0                
𝜕2𝜓

𝜕𝑥2
=  𝜅2𝜓,     𝜅 = √

2𝑚(𝑉0−𝐸)

ћ2
 , 𝜓2(𝑥) = 𝐶𝑒𝜅𝑥 + 𝐷𝑒−𝜅𝑥 
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We note that, as this region is finite in space, we don’t have to eliminate the growing 

exponential. 

In region 3:   V = 0   
𝜕2𝜓

𝜕𝑥2
=  −𝑘2𝜓 ,  𝜓1(𝑥) = 𝐹𝑒𝑖𝑘𝑥  

We note that, as there is no source of particles to the right of the barrier, we can neglect the 

left travelling wave (i.e. there is no 𝐺𝑒−𝑖𝑘𝑥 term). 

As the solutions are plane waves, we can easily write the incident, reflected and transmitted 

fluxes in regions 1 and 3 as 

Region 1: 𝑗𝐼𝑁𝐶 = |𝐴|2 ћ𝑘

𝑚
,   |𝑗𝑅𝐸𝐹| = |𝐵2|

ћ𝑘

𝑚
 

Region 3: 𝑗𝑇𝑅𝐴𝑁𝑆 = |𝐹|2 ћ𝑘

𝑚
    . 

And we recall the definitions of the reflection and transmission coefficients in such a case are: 

𝑇 = |
𝑗𝑇𝑅𝐴𝑁𝑆

𝑗𝐼𝑁𝐶
| = |

𝐹

𝐴
|

2

 

𝑅 = |
𝑗𝑅𝐸𝐹

𝑗𝐼𝑁𝐶
| = |

𝐵

𝐴
|

2

 

Now we will apply continuity for both the wavefunction and its spatial derivative at the two 

boundaries, namely at 𝑥 = 0 and at 𝑥 = 𝐿: 

𝜓 continuous →             𝐴 + 𝐵 = 𝐶 + 𝐷               (1)   𝐶𝑒𝜅𝐿 + 𝐷𝑒−𝜅𝐿 =  𝐹𝑒𝑖𝑘𝐿           (3) 

𝑑𝜓

𝑑𝑥
continuous →            𝑖𝑘(𝐴 − 𝐵) = 𝜅(𝐶 − 𝐷) (2)         𝜅(𝐶𝑒𝜅𝐿 − 𝐷𝑒−𝜅𝐿) =  𝑖𝑘𝐹𝑒𝑖𝑘𝐿    (4)

  

We have obtained a set of four simultaneous equations. Note that we have five unknowns (A, 

B, C, D, and F), but we are not interested in solving for all of the unknowns simultaneously. If 

we remind ourselves of the transmission coefficient, we see that it is the ratio F/A that we 

are actually seeking. After some manipulation, we obtain this ratio: 

𝐹

𝐴
=

4𝑖𝑘𝜅 𝑒−𝑖𝑘𝐿

(𝜅 + 𝑖𝑘)2 𝑒−𝜅𝐿 − (𝜅 − 𝑖𝑘)2 𝑒𝜅𝐿
 

This can be rewritten in terms of the convenient quantity  and its complex conjugate as   

𝐹

𝐴
=  

4𝑖𝑘𝜅𝑒𝑖𝑘𝐿

𝛼2𝑒−𝜅𝐿 − 𝛼∗2𝑒𝜅𝐿
 

where  𝛼 = 𝜅 + 𝑖𝑘 and  𝛼∗ = 𝜅 − 𝑖𝑘.  
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This gives the transmission coefficient as 

 𝑇 = |
𝐹

𝐴
|

2

= (
4𝑖𝑘𝜅𝑒𝑖𝑘𝐿

𝛼2𝑒−𝜅𝐿−𝛼∗2𝑒𝜅𝐿)
∗

(
4𝑖𝑘𝜅𝑒𝑖𝑘𝐿

𝛼2𝑒−𝜅𝐿−𝛼∗2𝑒𝜅𝐿) =
16𝜅2𝑘2

(𝜅2+𝑘2)2(𝑒𝜅𝐿+𝑒−𝜅𝐿)2+16𝜅2𝑘2 

Eliminated  and *, this can also be written as 

𝑇 =
4𝜅2𝑘2

(𝜅2 + 𝑘2)2𝑠𝑖𝑛ℎ2(𝜅𝐿) + 4𝜅2𝑘2
 

where we have used the hyperbolic function 𝑠𝑖𝑛ℎ(𝜃) = (𝑒𝜃 + 𝑒−𝜃)/2. 

We could repeat this whole process for the case 𝐸 > 𝑉𝑜 , and obtain the relevant transmission 

coefficient, but it would be tedious. If we inspect the solutions in region 2, however, we note 

that rather than obtaining the sum of simple growing and decaying exponentials, we would 

obtain a similar sum of complex exponentials (plane waves) and that these would be 

characterised by a wavenumber, q, given by 

𝑞 = √
2𝑚(𝐸 − 𝑉0)

ћ2
 

So we can simply replace 𝜅 by 𝑖𝑞 in the previously obtained transmission coefficient, yielding 

𝑇 =
4𝑞2𝑘2

(𝑘2 − 𝑞2)2𝑠𝑖𝑛2(𝑞𝐿) + 4𝑞2𝑘2
 

It is worth noting that the hyperbolic function has been replaced by the trigonometric 

function. 
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The classically strongly forbidden case: There exist a family of realistic situations where the 

analysis of Quantum Mechanical tunneling can be simplified significantly by considering the 

classically strongly forbidden case.  What is meant by “classically strongly forbidden” is that 

the particle or particles encounter a tall or thick barrier, where classically we really, really 

would not expect any transmission at all (hence strongly forbidden). One obvious condition 

that would give rise to this would be 𝐸 ≪ 𝑉𝑜, shown in figure 2. 

Figure 2: A classically strongly forbidden tunneling situation, where the height of the barrier 

is very much greater than the energy of the particle or particles. 

Let us consider 𝐸 ≪ 𝑉𝑜  , another way of saying this is that  𝜅𝐿 ≫ 1, as 𝜅 = √2𝑚(𝑉0 − 𝐸)/ћ2. 

If we recall the transmission coefficient for a rectangular barrier is given by the equation  T= 
16𝜅2𝑘2

(𝜅2+𝑘2)2(𝑒𝜅𝐿+𝑒−𝜅𝐿)2+16𝜅2𝑘2, and apply the condition 𝜅𝐿 ≫ 1, we can easily derive the result for 

the transmission in the classically strongly forbidden case: 

𝑇 =
16𝐸(𝑉𝑜−𝐸)𝑒−2𝜅𝐿

𝑉𝑜
2   = 𝐴(𝐸) 𝑒−2𝜅𝐿 

We find that (mathematically) the transmission coefficient can be split into a slowly varying 

function of energy,  A(E), and a single decaying exponential, 𝑒−2𝜅𝐿.  This is an important result 

which is used widely and encountered frequently in the research literature. It is very useful. 

In summary, we have is a tunnelling probability that is: 

          a) exponentially decaying with distance 

          b) characterised by the extinction coefficient 𝜅 = √
2𝑚(𝑉0−𝐸)

ћ2 .  

 

 

V0  very high up... 
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An overview of the results so far for the rectangular barrier: The transmission coefficients in 

the two cases of E < V0 and E > V0 can be rewritten in terms of the energy and barrier height 

as: 

𝐸 < 𝑉0 ,                     𝑇(𝐸) =
1

1+
𝑠𝑖𝑛ℎ2(𝜅𝑙)

4(
𝐸

𝑉0
)(1−

𝐸
𝑉0

)

,  𝜅 = √
2𝑚(𝑉0−𝐸)

ћ2  

𝐸 > 𝑉0,                                   𝑇(𝐸) =
1

1+
𝑠𝑖𝑛2(𝑞𝑙)

4(
𝐸

𝑉0
)(

𝐸
𝑉0

−1)

,            𝑞 = √
2𝑚(𝐸−𝑉0)

ћ2  

In figure 3 I have sketched the transmission coefficient as a function of the ratio of the particle 

energy to the barrier height (so when this ratio is 1 when E = V0 ). Please note that the 

transmission is not-zero within the classically forbidden region. Also note the oscillations in 

the classically allowed region. 

 

Figure 3: the transmission coefficient versus thet ratio of particle energy to barrier height, for 

a rectangular potential barrier. 

If we take the classically strongly forbidden case (e.g. E << V0 ) we can sketch the 

transmission coefficient variation with barrier thickness (or tunneling distance). This is a 

simple exponential decay, as shown in figure 4, which is characterised by the extinction 

coefficient, . Since the extinction coefficient itself is determined by the difference between 

the particle energy and the barrier height, it follows that the higher the particle energy the 

smaller the extinction coefficient and the more pronounced the tunneling (the transmission 

coefficient drops off slower with distance). 

1 

1 
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Figure 4: The transmission coefficient versus barrier width in the classically strongly 

forbidden case. 

In the classically allowed case of E  V0 . On the other hand, the plot of transmission 

coefficient versus barrier width, shown in figure 5, displays some interesting effects. 

 

 

Figure 5: transmission coefficient versus barrier width in the classically allowed case E  V0. 

 

We note that the transmission coefficient periodically peaks at 1. That is, there is no reflection 

whatsoever. The explanation is simple: T = 1 for  𝐸 > 𝑉0  if  𝑠𝑖𝑛(𝑞𝑙) = 0  as the denominator 

will go to one in the expression for T. This is the case if 𝑞𝐿 = 𝑛𝜋, and as q is the wavenumber 

of the matter wave,  𝑞 = 2𝜋/𝜆  ,   this gives  𝐿 =
𝑛𝜆

2
  (i.e. the well width is must be an integer 

number of  ½ wavelengths to have T=1). 

 

larger  

smaller  

1 
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For a given particle energy, and thus wavelength, the resonant transmission will occur as the 

increasing barrier width in figure 5 matches exactly an integer number of half wavelengths, 

as shown in figure 6. 

 

 

 

 

Figure 6: resonant transmission occurs when the barrier width is an integer number of ½ 

wavelengths. 

The same resonant transmission condition applies if we consider a fixed barrier width and a 

varying particle energy (and therefore wavelength).  This case is shown in figure 7. 

 

Figure 7: for a fixed barrier width, resonant transmission occurs as particle energy increases 

x 
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It is worth noting that the case E > V0  , for matter waves encountering a barrier of width L 

and height V0 , is mathematically equivalent to particles encountering a well of width L and 

depth V0.  This situation is shown in figure 8. 

 

Figure 8: a beam of particles encountering a well of width L and depth V0.  

The only difference between the mathematics derived in the classically allowed situation for 

the barrier and this situation is that the wavenumber, q, for the matter wave above the well 

is given by  𝑞 = √2𝑚(𝑉0 + 𝐸)/ћ2   (exercise). 

The equivalent of figure 3 for the example of particles encountering a well is sketched in figure 

9. We note that the potential strength parameter, 0 , determines whether resonant 

transmission is more or less prominent. 

 

Figure 9: the transmission coefficient for a beam of particles of energy E, encountering a well 

of width L and depth V0 , plotted versus the energy to well depth ratio for large and small 

values of the potential strength parameter. 

1 


