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QUANTUM MECHANICS A (SPA-5319) 

 

The Hydrogen Atom and Angular Momentum 

In order to solve the Hydrogen atom quantum mechanically we shall assume that the atom consists 

of a proton that is stationary and at the origin (we are neglecting the centre of mass motion of the 

atom). The potential that the electron experiences is a simple electrostatic, time-independent and 

radial potential. The natural coordinate system to use is therefore a spherical polar coordinate system 

(see figure 1). 

   

 

 

 

  

 

  

 

 

 

 

 

Figure 1: Spherical polar coordinates, used throughout this section. 

 

Our initial approach is to consider the Time Independent Schrödinger Equation (TISE) in three 

dimensions. We have already encountered this in Cartesian form: 

−ℏ2

2𝑚
∇2ψ(x, y, z) + Vψ(x, y, z) = Eψ(x, y, z)   

where: 

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

Clearly for the Hydrogen atom we will require the time-independent Schrödinger equation in polar 

form.  The first point to consider is how to write the gradient squared in polar form. I have taken this 

proton – At origin and stationary  

1 – Orbiting electron 

V – Time independent  

 

       Simple Electrostatic potential 

𝑉(r) =
−𝑒2

4𝜋𝜀0𝑟
 

 

θ 

𝜙 

0 ≤ 𝜃 ≤ 𝜋 

  0 ≤ 𝜑 ≤ 2𝜋 

 0 ≤ 𝑟 ≤ ∞ 

𝒓 

𝑥   𝒓  𝒓 

y 

𝑧 



2 
 

from the literature, but a general  method for converting spatial derivatives from one coordinate 

system to another can be found in M. L. Boas , Mathematical Methods in the Physical Sciences, Wiley, 

ISBN -13 978-0-471-19826-0. 

In any case, using the fact that 

∇2=
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕 (𝑠𝑖𝑛𝜃
𝜕

𝜕𝜃
)

𝜕𝜃
+

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜑2
 

we can rewrite the time-independent Schrödinger equation for use with  a spherical polar 

wavefunction,  ψ(r, θ, φ), in the following form: 

−ℏ2

2𝑚
{

1

𝑟2

𝜕 (𝑟2 𝜕ψ

𝜕𝑟
)

𝜕𝑟
+

1

𝑟2𝑠𝑖𝑛𝜃

𝜕 (𝑠𝑖𝑛𝜃
𝜕ψ

𝜕𝜃
)

𝜕𝜃
+

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2ψ

𝜕𝜑2} + 𝑉(𝑟)ψ = Eψ 

As the potential is radial (and we are not concerning ourselves with the actual form of the potential 

at this point) we can proceed using the technique of separation of variables. Thus we can write the 

wavefunction as the product of a radial and an angular component: 

 ψ(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) = 𝑅𝑌 

Substituting these into the time-independent Schrödinger equation we obtain 

1

𝑅

𝜕 (𝑟2 𝜕𝑅

𝜕𝑟
)

𝜕𝑟
−

2𝑚𝑟2

ℏ2
(𝑉 − 𝐸) =

−1

𝑌
{

1

𝑠𝑖𝑛𝜃

𝜕 (𝑠𝑖𝑛𝜃
𝜕𝑌

𝜕𝜃
)

𝜕𝜃
+

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜑2} 

On the left-hand side are all functions of r and on the right-hand side all functions of  and . In order 

for these to be true for any values of any variables, the two sides must equal a constant, C1. I shall 

write this constant as 𝐶1 = 𝑙(𝑙 + 1), where, for the time being, l can be taken to be any complex 

number, although its significance will become apparent in due course. 

We can now write the original Schrödinger equation as two equations, one radial and one angular: 

1

𝑅

𝜕 (𝑟2 𝜕𝑅

𝜕𝑟
)

𝜕𝑟
−

2𝑚𝑟2

ℏ2
(𝑉 − 𝐸) = 𝑙(𝑙 + 1) 

and 

−1

𝑌
{

1

𝑠𝑖𝑛𝜃

𝜕 (𝑠𝑖𝑛𝜃
𝜕𝑌

𝜕𝜃
)

𝜕𝜃
+

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜑2} = 𝑙(𝑙 + 1) 

We shall now concentrate on the angular equation and apply separation of variables once again: 

𝑌(𝜃, 𝜑) =  Θ(𝜃)𝛷(𝜑) =  Θ𝛷 

We substitute this into 
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−1

𝑌
{

1

𝑠𝑖𝑛𝜃

𝜕 (𝑠𝑖𝑛𝜃
𝜕𝑌

𝜕𝜃
)

𝜕𝜃
+

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌

𝜕𝜑2} = 𝑙(𝑙 + 1) 

to obtain 

−
1

𝛷

𝜕2𝛷

𝜕𝜑2
=

𝑠𝑖𝑛𝜃

Θ

𝜕 (𝑠𝑖𝑛𝜃
𝜕Θ

𝜕𝜃
)

𝜕𝜃
+ 𝑙(𝑙 + 1)𝑠𝑖𝑛2𝜃 

Once again these must be equal to a constant, C2, which I shall write as 𝐶2 = 𝑚𝑙
2. For the time being, 

ml can be taken as any complex number, although we shall see it is much simpler than that. 

Our two equations thus become: 

𝑠𝑖𝑛𝜃

Θ

𝑑 (𝑠𝑖𝑛𝜃
𝑑Θ

𝑑𝜃
)

𝑑𝜃
+ 𝑠𝑖𝑛2𝜃 𝑙(𝑙 + 1) = 𝑚𝑙

2 

and 

−1

𝛷

𝑑2𝛷

𝑑𝜑2
= 𝑚𝑙

2 

The solution to the simple differential equation in  is: 

𝛷(𝜑) = 𝑒𝑖𝑚𝑙𝜑 

And as 𝛷(𝜑 + 2𝜋) = 𝛷(𝜑) (this is a periodic boundary condition resulting from the definition of , 

see figure 1) 𝑚𝑙 is an integer. Therefore  𝑚𝑙 = ⋯− 3,−2,−1, 0, 1, 2, 3… 

As for the equation in ,  it rearranges into: 

sin𝜃
𝑑(sin𝜃

𝑑Θ

𝑑𝜃
)

𝑑Θ
+  Θ{𝑠𝑖𝑛2𝜃 𝑙(𝑙 + 1) −𝑚𝑙

2} = 0 

This is a form of the Legendre differential  Equation. 

The solutions to this have been worked out by our mathematician colleagues, they are of the form: 

Θ(𝜃) = 𝐴 𝑃𝑙
𝑚𝑙(cos 𝜃) 

where 𝑃𝑙
𝑚𝑙(𝑥)  is the associated Legendre function, given by: 

𝑃𝑙
𝑚𝑙(𝑥)  ≡ (1 − 𝑥2)

|𝑚𝑙|

2 (
𝜕

𝜕𝑥
)
|𝑚𝑙|

𝑃𝑙(𝑥) 

and where 𝑃𝑙(𝑥) is the Legendre Polynomial 

𝑃𝑙(𝑥) =  
1

2𝑙𝑙!
(
𝑑

𝑑𝑥
)𝑙(𝑥2 − 1)𝑙  
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All of this is mathematically complicated and for the time being does not offer any obvious physical 

insight. There are two important points to consider, however:  

a) The solutions involve a polynomial of order l, therefore l is an integer: 𝑙 = 0, 1, 2… 

b) Taking the |𝑚𝑙| 
th derivative of a polynomial of order l is non zero only if |𝑚𝑙|  ≤  𝑙 , therefore the 

value of  (the modulus of) ml cannot exceed that of l. More simply:  𝑚𝑙 = −𝑙 …− 1, 0, 1… 𝑙 

Of course, the latter implies that there are (2𝑙 + 1) values of ml  for each value of l. 

We can now write normalised angular wavefunctions, called Spherical Harmonics, in their most 

general form: 

𝑌𝑙
𝑚𝑙(𝜃, 𝜑) = 𝜖√

(2𝑙+1)(𝑙−|𝑚𝑙|)!

4𝜋(𝑙+|𝑚𝑙|)!
𝑒𝑖𝜑𝑚𝑙𝑃𝑙

𝑚𝑙(cos 𝜃) 

 

 

where 𝜖 = (−1)𝑚𝑙   for 𝑚𝑙 ≥ 0,= 1 otherwise. 

We note that an individual spherical harmonic depends both on l and ml , and given that there are 

(2𝑙 + 1) values of ml  for every value of l , the number of harmonics grows quickly with l . The general 

expression given above is quite complicated but it can be dissected into familiar parts such as a 

normalisation constant, a complex exponential () which includes the value of ml and a polynomial 

in either sin or cos of order l .  

To illustrate this, the first few (up to l = 2) spherical harmonics are: 

  𝑌0
0 = √

1

4𝜋
 

  𝑌1
0 = √

3

4𝜋
𝑐𝑜𝑠𝜃   𝑌1

±1 = ∓√
3

8𝜋
𝑠𝑖𝑛𝜃 𝑒±𝑖𝜑 

 𝑌2
0 = √

5

16𝜋
(3𝑐𝑜𝑠2𝜃 − 1) 𝑌2

±1 = ∓√
15

8𝜋
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑒±𝑖𝜑 𝑌2

±2 = √
15

8𝜋
𝑠𝑖𝑛2𝜃 𝑒±2𝑖𝜑 

It is well worth noting that spherical harmonics have many applications that range beyond quantum 

mechanics. 

Having dealt with the angular portion of the wavefunction, which does not depend on the specific 

potential used, other than it being radial, it is now time to consider the radial part of the wavefunction. 

After the initial separation of variables we obtained: 

𝑑(𝑟2 𝑑𝑅

𝑑𝑟
)

𝑑𝑟
− 

2𝑚𝑟2

ℏ2
(𝑉 − 𝐸)𝑅 = 𝑙(𝑙 + 1)𝑅 

Using the substitution 𝑈(𝑟) = 𝑟𝑅(𝑟) we can rewrite the radial equation as: 

Normalisation constant  ()      () 
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−ℏ2

2𝑚

𝑑2𝑈(𝑟)

𝑑2𝑟2
+ 𝑈(𝑟)(𝑉(𝑟) +

ℏ2

2𝑚𝑟2
𝑙(𝑙 + 1)) = 𝐸𝑈(𝑟) 

This looks just like the time-independent Schrödinger equation, although it is written in terms of 

U(r) and includes an extra term, 
ℏ2

2𝑚𝑟2 𝑙(𝑙 + 1) (which we will later identify as a rotational kinetic 

energy term). 

At this point we can actually substitute the electrostatic potential 

𝑉(𝑟) =  
−𝑒2

4π𝜀𝑜
 .
1

𝑟
 

to get 

−ℏ2

2𝑚

𝑑2𝑈

𝑑2𝑟2
+ [

−𝑒2

4π𝜀0
.
1

𝑟
+

−ħ2

2𝑚

𝑙(𝑙 + 1)

𝑟2
]𝑈 = 𝐸𝑈 

In order to proceed with the solution we need to define: 𝑘 = √
−2𝑚𝐸

ħ2  

And note that we are interested in the bound state solutions where k  is real, as 𝐸 ≤ 0. We thus 

obtain 

1

𝑘2

𝑑2𝑈

𝑑𝑟2
= [1 − 

𝑚𝑒2

4π𝜀𝑜ℏ
2𝑘

 .
1

(𝑘𝑟)
+

𝑙(𝑙 + 1)

(𝑘𝑟)2
]𝑈 

Let us now define the terms  𝜌 = 𝑘𝑟 and 𝜌0 =
𝑚𝑒2

4π𝜀0ℏ
2𝑘

 and obtain the somewhat simpler expression: 

𝑑2𝑈

𝑑𝜌2
= [1 − 

𝜌0

𝜌
+

𝑙(𝑙 + 1)

𝜌2
]𝑈 

The solutions to the above are not obvious, but we can consider its asymptotic behaviour.  

By taking limit to 𝜌 →  ∞ we get:  𝑈(𝜌)~𝐴𝑒−𝜌 

And by taking Limit to 𝜌 → 0 we get:  𝑈(𝜌)~𝐶𝜌𝑙+1 

In order to account for the whole range of  we make use of a third (as yet unspecified) function of , 

namely v(), and write the overall solution as 

𝑢(𝜌) =  𝜌𝑙+1𝑒−𝜌𝑣(𝜌) 

When we substitute this into 
𝑑2𝑈

𝑑𝜌2 = [1 − 
𝜌0

𝜌
+

𝑙(𝑙+1)

𝜌2 ]𝑈 we obtain 

(𝜌0 − 2𝑙 − 2)𝑣 + 2(𝑙 + 1 − 𝜌)
𝑑𝑣

𝑑𝜌
+ 𝜌

𝑑2𝑣

𝑑𝜌2
= 0 

As we do not know the exact mathematical form of v() we have to proceed by writing it in the 

general form of a power series in  : 
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𝑣(𝜌) = ∑𝑎𝑗𝜌
𝑗

∞

𝑗=0

 

This then implies the recursion relation: 

𝑎𝑗+1 = (
2(𝑗 + 𝑙 + 1) − 𝜌0

(𝑗 + 1)(𝑗 + 2𝑙 + 2)
)𝑎𝑗    

The recursion relation can yield all the coefficients of the powers of . This allows us in principle to 

evaluate the whole series but has an important implication. In order for the series to be finite (and 

not therefore tend to infinity!) the series must terminate. This will happen when the numerator of 

the recursion relation is 0 at some maximum power of j, namely 𝑗𝑚𝑎𝑥. So: 

2(𝑗𝑚𝑎𝑥 + 𝑙 + 1) − 𝜌0 = 0  

We can finally define n, the principal quantum number as:    𝑛 =  𝑗𝑚𝑎𝑥 + 𝑙 + 1    and we note that 

this is just an integer (n = 1, 2, 3, 4…). This definition has two important consequences:  

a) Since  𝑗𝑚𝑎𝑥 ≥ 0 then the integer values of l are constrained by n and the relation:  𝑙 ≤ 𝑛 − 1 

b) Since 2𝑛 = 𝜌0 with 𝜌0 =
𝑚𝑒2

4π𝜀𝑜ħ2𝑘
 and 𝑘 = √

−2𝑚𝐸

ħ2 , then the value of n determines the energy E of 

the electron. 

The latter point allows us to obtain the Bohr Equation for the allowed electronic energy levels of the 

hydrogen atom: 

𝐸𝑛 = −{
𝑚

2ℏ2 (
𝑒2

4π𝜀𝑜
)

2

}
1

𝑛2
= −13.6

1

𝑛2
𝑒𝑉 =  

𝐸1

𝑛2
 

With 𝑛 = 1, 2, 3…  These energies are negative as they correspond to bound states consistent with a 

vacuum level that is defined to be zero. We can also define the Bohr radius: 

𝑎 =  
4𝜋𝜀𝑜ℏ

2

𝑚𝑒2
= 0.529x10−10m 

This radius can be used, amongst other things, to simplify the form of the radial solutions. We also 

note that it implies an atomic size of an Angstrom, using only fundamental constants. 

We have already established that the full electronic wavefunction 𝜓𝑛,𝑙,𝑚𝑙
(𝑟, 𝜃, 𝜑)  is simply the 

product of a radial part, which depends on n and l only, and a spherical harmonic which depends on l 

and ml only i.e. 

𝜓𝑛,𝑙,𝑚𝑙
(𝑟, 𝜃, 𝜑) = 𝑅𝑛,𝑙(r)𝑌𝑙

𝑚𝑙(θ,φ) 

where 

𝑅𝑛,𝑙(r) =  
1

𝑟
𝜌𝑙+1𝑒−𝜌𝑣(𝜌)  and  𝑌𝑙

𝑚𝑙(θ,φ) = 𝐶 𝑒𝑖𝑚𝑙𝜑𝑃𝑙
𝑚𝑙(cos𝜃) 

The three quantum numbers and their constraints are:  
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Principal Quantum Number, 𝑛 = 1, 2, 3, …  

Orbital Angular Momentum Quantum Number, 𝑙 = 0, 1, 2, … (𝑛 − 1)  

Orbital Magnetic Quantum Number, 𝑚𝑙 = −𝑙, …− 1, 0, 1, …+ 𝑙  

 

At this point it is worth noting that we can write 𝑣(𝜌) as: 

𝑣(𝜌) =  𝐿𝑛−𝑙−1
2𝑙+1 (2𝜌) 

where 𝐿𝑞−𝑝
𝑝

(𝑥) is the Associated Laguerre Polynomial given by 𝐿𝑞−𝑝
𝑝

(𝑥)  = (−1)𝑝(
𝑑

𝑑𝑥
)𝑞 (𝑒−𝑥𝑥𝑞) 

Once again the mathematical complexity of the radial wavefunction can appear daunting so it is worth 

looking at the first few radial wavefunctions of the Hydrogen atom. The normalised radial 

wavefunctions can been written in terms of the Bohr radius, a, as: 

 𝑅1,0 = 2𝑎
−3

2 𝑒−
𝑟

𝑎 

 𝑅2,0 =
1

√2
𝑎

−3

2 (1 −
𝑟

2𝑎
) 𝑒−

𝑟

2𝑎, 𝑅2,1 =
1

√24
𝑎

−3

2
𝑟

𝑎
𝑒−

𝑟

2𝑎  

𝑅3,0 =
2

√27
𝑎

−3

2 (1 −
2𝑟

3𝑎
+

2

27
(

𝑟

𝑎
)
2

) 𝑒−
𝑟

3𝑎, 𝑅3,1 =
8

27√6
𝑎

−3

2 (1 −
𝑟

6𝑎
) (

𝑟

𝑎
) 𝑒−

𝑟

3𝑎, 𝑅3,2 =
4

81√30
𝑎

−3

2 (
𝑟

𝑎
)
2

𝑒−
𝑟

3𝑎 

We can see that they follow a general form where 𝑅𝑛,𝑙 ∝ 𝑒
−𝑟

𝑛𝑎 multiplied by a polynomial in r with the 

highest power of (
𝑟

𝑎
) being n - 1. 

We note that we have written the full Hydrogen wavefunction as the product of a normalised radial 

and a normalised spherical harmonic function i.e.  𝜓𝑛,𝑙,𝑚𝑙
(𝑟, 𝜃, 𝜑) = 𝑅𝑛,𝑙(r)𝑌𝑙

𝑚𝑙(θ,φ). That is, the 

radial and spherical functions have each been normalised separately. This has been achieved by 

considering the normalisation condition for a single electron in three dimensions: 

1 = ∫Ψ∗Ψ𝑑𝑉 = ∫|𝜓|2𝑑𝑉 

Using ψ(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑) and a volume element 𝑑𝑉 = 𝑟2𝑠𝑖𝑛𝜃 𝑑𝑟 𝑑𝜃 𝑑𝜑 in spherical polar 

coordinates to obtain 

1 = ∫ 𝑟2|𝑅|2 𝑑𝑟 ∫ ∫ 𝑠𝑖𝑛𝜃|𝑌|2
𝜑=2𝜋

𝜑=0

𝜃=𝜋

𝜃=0

∞

0

 𝑑𝜑 𝑑𝜃 

This, of course, implies that radially the probability of detecting the electron in the element between 

r and r + dr is given by:  

𝑟2|𝑅(𝑟)|2 𝑑𝑟 
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The time has come to look at angular momentum in Quantum Mechanics and the physical significance 

of 𝑙 and 𝑚𝑙  in detail. Classically the angular momentum of a particle about the origin is defined, using 

its position and linear momentum, by  𝐿⃗ = 𝑟  × 𝑝 . The angular momentum is a vector and we can 

write it in terms of its components, 𝐿𝑥 , 𝐿𝑦, 𝐿𝑧. This is also true of the position whose components are 

simply 𝑥, 𝑦, 𝑧 and the linear momentum whose components are 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 . 

Using the properties of the cross product, each component can be written as  

𝐿𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥    , 𝐿𝑦 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧 and 𝐿𝑥 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦 

We remind ourselves that quantum mechanically the momentum operator can be written as: 

𝑝𝑦̂ = −𝑖ℏ 
𝜕

𝜕𝑦
  or  𝑝𝑥̂ = −𝑖ℏ 

𝜕

𝜕𝑥
 or  𝑝𝑧̂ = −𝑖ℏ 

𝜕

𝜕𝑧
 

So the operator corresponding to the z-component of the angular momentum is: 

  𝐿𝑧̂ = −𝑖ℏ(𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
) .  

We also apply this approach when considering the magnitude (or modulus squared) of the angular 

momentum itself and write:  |𝐿|̂2 = 𝐿𝑥̂
2
+ 𝐿𝑦̂

2
+ 𝐿𝑧̂

2
 

All of the above has been applied using Cartesian coordinates and once again we require the 

differential operators in spherical polar form.  The two main operators in spherical coordinates 

become: 

𝐿𝑧̂ = −𝑖ℏ
𝜕

𝜕𝜑
  and 𝐿2̂ = −ℏ2[

1

sin𝜃

𝜕(sin𝜃
𝜕

𝜕𝜃
)

𝜕𝜃
+

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜑2] 

We can then apply these operators to the wavefunction: 

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(r)Y(θ, φ) = 𝑅(𝑟)Θ(𝜃)𝑒𝑖𝑚𝑙𝜑 

The first equation we obtain is  𝐿𝑧̂𝜓 = −𝑖ℏ
𝜕(𝑅Θ𝑒𝑖𝑚𝑙𝜑)

𝜕𝜑
  , yielding the elegant eigenvalue equation: 

𝐿𝑧̂𝜓 = ℏ𝑚𝑙𝜓 

The second equation we obtain is  𝐿2̂𝜓 =  −ℏ [
1

𝑠𝑖𝑛 𝜃

𝜕(𝑠𝑖𝑛 𝜃
𝜕

𝜕𝜃
)

𝜕𝜃
+

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜑2] 𝑅𝛩𝑒𝑖𝑚𝑙𝜑  , which (after 

some manipulation) yields a second eigenvalue equation: 

𝐿2̂𝜓 = ℏ2 𝑙(𝑙 + 1)𝜓 

These are extremely important results: 

First they tell us that angular momentum itself is quantised, and that the natural unit for angular 

momentum is ℏ itself. Second, they imply that the magnitude of the orbital angular momentum is 

simply determined by l and that it is given by: |𝐿⃗ | = ℏ√𝑙(𝑙 + 1). 
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The third result is that the orbital angular momentum has a distinct number of projections along a 

given axis, z. These projections, or components, are given by 𝐿𝑧 = ℏ𝑚𝑙 , so they are determined by 

the orbital magnetic quantum number 𝑚𝑙 and there are 2𝑙 + 1 such values allowed. 

They also tell us that our wavefunctions 𝜓𝑛,𝑙,𝑚𝑙
 are simultaneous eigenfunctions of all three quantum 

numbers as summarised below. 

Quantity Energy |𝐿⃗ | 𝐿𝑧 

Quantum Number n l 𝑚𝑙 
Value 

13.6
1

𝑛2
𝑒𝑉 ℏ√𝑙(𝑙 + 1) ℏ𝑚𝑙 

 

Visualising these results is greatly aided by considering the angular momentum vector as a vector 

precessing about the z-axis as shown in figure 2 (drawn for an arbitrary value of l). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A vector diagram representing the angular momentum and its possible projections. We can 

imagine these as confined within a sphere of radius ℏ√𝑙(𝑙 + 1). 

In order to fully consider all the possible electronic states for the Hydrogen atom we have to take into 

account spin angular momentum in addition to orbital angular momentum. As electrons have spin = 
1

2
  

(i.e. they have by their very nature s = ½) there are two possible projections of this spin angular 

momentum about the z-axis, 𝑚𝑠 = ±
1

2
 . These are often referred to as spin-up and spin-down and 

denoted using the short hand (↑, ↓). 

The full electronic wavefunction will depend on all four quantum numbers and thus becomes: 

𝜓𝑛,𝑙,𝑚𝑙,𝑚𝑠
(𝑟, 𝜃, 𝜑) 

ℏ 

ℏ 

z 

𝐿⃗  with |𝐿⃗ | = ℏ√𝑙(𝑙 + 1) 𝐿𝑧 =  ℏ𝑚𝑙 

𝑚𝑙 = 0 

𝑚𝑙 = 1 

𝑚𝑙 = +𝑙 

𝑚𝑙 = 𝑙 − 1 

𝑚𝑙 = −𝑙 ℏ 

ℏ 
𝑚𝑙 = −1 

. 

. 

. 
 

. 

. 

. 
 

2𝑙 + 1 values 
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With the values of the quantum numbers given by: 

Principal Quantum Number, 𝑛 = 1, 2, 3, …  

Orbital Angular Momentum Quantum Number, 𝑙 = 0, 1, 2, … (𝑛 − 1)  

Orbital Magnetic Quantum Number, 𝑚𝑙 = −𝑙, …− 1, 0, 1, …+ 𝑙   (2l + 1 values) 

Spin Magnetic quantum number,  𝑚𝑠 = +
1

2
,  −

1

2
   (2s +1 = 2 values for s = ½ ) 

In the absence of any external magnetic fields, the energy of the electron in the Hydrogen atom is only 

dictated by the principal quantum number. The resulting energy levels have increasing degeneracy 

with increasing n.  An energy diagram for the Hydrogen atom is shown schematically in figure 3 and 

illustrates that the energy level degeneracy is given by 2n2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic energy diagram for the Hydrogen atom. 

 

𝐸

𝑒𝑉
 

 

E = 0 

E = -13.6 

E = -3.4 

E = -1.51 

n = 1  
l = 0  ml = 0    ms = +1/2, -1/2  
degeneracy = 2 

n = 2  
l = 0  ml = 0    ms = +1/2, -1/2  
l = 1  ml = -1, 0, 1   ms = +1/2, -1/2 
degeneracy = 8 

n = 3  
l = 0  ml = 0    ms = +1/2, -1/2  
l = 1  ml = -1, 0, 1   ms = +1/2, -1/2 
l = 2  ml = -2, -1, 0, 1, 2  ms = +1/2, -1/2 
degeneracy = 18 


