
QUANTUM MECHANICS A (SPA-5319) 
 

Alpha Decay & Tunneling 
 

This was one of the first applications of quantum mechanics, made independently 
in 1928 by Gamow and Condon & Gurney. First some experimental facts about α-decay: 

  

A nucleus with positive charge Ze = +(Z1 + Z2)e decays to a daughter nucleus of 
charge +Z1 e by the emission of a positively charged α-particle, Z2 = 2. Measured half-
lives span an enormous range from τ1/2~10−7 sec. to 5 × 1015 yrs. Emerging α-particle 

energies are typically a few MeV, 5 MeV being a representative value used in our 
subsequent estimates.  

 

 226Ra 88   E α = 4.78 & 4.59 MeV     τ1/2 = 1.6 × 103 yrs.  

 238U 92   E α = 4.18 MeV     τ1/2 = 4.5 × 109 yrs.  

 239Pu 94   E α = 5.15 MeV     τ1/2 = 2.4 × 104 yrs.  

 

 (The notation for nuclei is that the superscipt is the mass number (A) and the 
subscript is the nuclear charge (Z) in units of e). In a nucleus the Coulomb repulsion of the 
positive constituents is dominated by an overwhelmingly powerful attractive nuclear force 
that acts only over a very short range ≤ 1  fm = 10−15 m. The radii of nuclei range from 
R~1 × 10−15 → 5 × 10−15  m. We will model the approximately spherically symmetric 
potential felt by the α-particle bound in the nucleus by a one-dimensional deep square well 
of size R. Beyond R the α-particle does not experience the nuclear force; instead it is 
subject to the Coulomb repulsion of the daughter nucleus:  

 

 V(x) = −V0               for     0 < x < R (1) 

 =
Z1Z2e2

x
       for     x ≥ R (2) 

 
        The diagram in figure 1 shows this situation. In 3-dimensions the potential would 
actually be rotated about the vertical axis, but this is a 1-dimensional model of that 
situation, hence the absence of a region to the left of the origin. The energy levels in the 
nucleus are discrete, and can be determined from laboratory experiments. The observation 
that typical emergent α-particle energies are ~5 MeV tells us the height of the energy 
level it occupies: 5 MeV above the zero. Classically the α-particle must climb up to the top 
of the barrier, requiring it to expend energy (Vmax − 5 MeV); then it would ‘roll’ down the 
right-hand side of the Coulomb barrier (being repelled by the daughter nucleus), regaining 
at a distance b all the energy it expended in climbing to Vmax. The problem with α-decay 
is that Vmax  is very large, and there is nowhere the α-particle could obtain so much 
energy within the nucleus. Where then does the energy come from? The quantum 
mechanical answer is that the particle does not climb over the potential barrier but instead 
tunnels  through it. 



  

(1) First we calculate the height of the barrier, which is the value of the Coulomb 
potential at the nuclear radius: 

  

 Vmax = V(R) =
Z1Z2e2

4πε0 R
 = 1.44 Z1Z2     MeV  (3) 

 
using R = 1 × 10−15 m. For the case of  239Pu 94, Z1 = 92, R~5 × 10−15 m, so that, 
with Z2 = 2, Vmax = 50 MeV.  
 

                                                                       

 

Figure 1: Potential experienced by 𝛼-particle inside & outside a nucleus. (Not to scale!) 
 

  (2) The position, x = b, at which the α-particle emerges with the energy E it 
had in the nucleus is given by  

 

 E =
Z1Z2e2

4πε0 b
 =

1.44 Z1Z2

b( in  units  of  10−15 m )
    MeV (4) 

 
leading to 

         b =
1.44 Z1Z2

E( in  MeV )
× 10−15     m.    

  (5) 
 
With E~5 MeV for plutonium we find b~53 × 10−15 m, some ten times further out than 
the nuclear radius. 



 

Thus we see the difficulties in this way of explaining α-decay: the very large height 
and width of the barrier seen by the α-particle. This situation is just the one for which the 
approximation sketched out in the Appendix applies, with tunnelling probability 

 

        T(E) ≃ A(E) e−G(E)  (6) 
 
with A(E)  a slowly varying function of energy compared with the dominant energy-
dependent tunnelling exponential determined by the Gamow factor,  
 

         G(E) = 2 (
2m

ℏ2
)

1

2
∫

b

R
(

Z1Z2e2

4πε0

1

x
− E)

1

2
 dx (7) 

  
where we have used the Coulomb potential for V(x) in the region outside the nucleus. 
Writing E in terms of b makes the two terms in the integrand of similar form, giving 
  

         G(E) = 2 (
2m

ℏ2 )
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2
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Evaluating the integral: I = ∫
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In the last step we changed variable of integration to: y = (
x

b
)

1

2
 , giving     

dx

x
1
2

= 2b
1

2 dy .  

 
Now, although this can be evaluated exactly, there is no need to do so because the lower 
limit is sufficiently small (R/b~1/10 or less) that we may approximate it by 0. The integral 
is then π/4, the area under the first quadrant of a circle of unit radius. Hence,  
 

 G(E) ≃ 2 (
2m

ℏ2
)

1

2
(

Z1Z2e2

4πε0
)

1

2 π√b

2
 ≃ π (

2m

ℏ2
)
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2
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Z1Z2e2

4πε0
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1

√E
 ≃ c 

Z1Z2

√E
 (9) 

where c is a constant. Since the decay rate is proportional to the probability of tunneling, 
which is the transmission coefficient, and the half-life is inversely proportional to the decay 
rate, we obtain1 
  

        τ1/2   ∝   
1

T(E)
  =   

1

A(E)
 e+c Z1Z2/√E (10) 

                                                      
1  A very rough estimate of the proportionality constant can be made by imagining the 𝛼-particle as bouncing back-and-forth in the 

nucleus with speed 𝑣. Thus at intervals of order 2𝑅/𝑣 seconds it hits the barrier. As the probability that it tunnels is 𝑒
−𝐺

, the average 

number of encounters needed before escape is 𝑒
+𝐺

, and therefore the total time required for escape is 𝜏 ≈ (2𝑅/𝑣)𝑒+𝐺. The speed is 

that corresponding to the 𝐸 ≈ 5 MeV 𝛼-particle, 𝑣 ≈ √2𝐸/𝑚 ≈ 2 × 107 m/sec. See Appendix A for further details.  



  
Taking logs, and remembering that A(E) is sufficiently slowly varying with E that we may 
assume it is approximately constant, we obtain  
 

       logτ1/2 ≃ const +
cZ1Z2

√E
  (11) 

  
Thus we have a prediction for the energy-dependence and Z1 -dependence (daughter 
nucleus charge; remember that Z2 = 2 for α-decay) of the half-life that can be compared 
with experiment over an enormous range of scales. The accompanying diagram shows how 

well the experimental points are fitted with a straight line in the logτ1/2 − Z1/√E plot, 

providing strong evidence that the decays do indeed proceed by quantum tunnelling. 

 
Figure 2: Test of quantum tunnelling theory of 𝛼-decay, eq. (19). 

 



 
 
Appendix A: Estimating the lifetime.  

 

We can make a very rough estimate of the lifetime of a nucleus due to α-decay by 
imagining the α-particle bound in the nucleus as a de Broglie wave travelling back-and-
forth inside the nuclear well of size R. Each time the wave is reflected off the wall at the 
penetrable barrier it is given an ’opportunity’ to tunnel through. This is like a gambler 
throwing a dice for whom the probability of obtaining a 6 in each throw is 1/6; similarly the 
probability of tunnelling through each time the de Broglie wave is incident on the barrier is 

the Gamow factor, e−G. We now need to know how many times per second the de Broglie 
wave ‘attempts’ to tunnel. The wave has wavelength λ given by the de Broglie relation: 

  

             λ =
h

p
=

h

mv
 ,  (12) 

  
which is also approximately the size of the trapping region, the nucleus,  
 

              λ ≈ R .  (13) 
  
Hence, very approximately,  
 

                v ≈
h

mR
 .  (14) 

  
Therefore successive encounters with the barrier take a time 
 

                               t0 ≈
2R

v
≈

mR2

πℏ
 .  (15) 

  

Now on average we need e+G ’attempts’ to tunnel for just one successful tunneling event 
(just like we need, on average, 6 throws of the dice to achieve one 6). Therefore one 
tunneling event takes a time 
  

          τ ≈ t0e+G ≈
mR2

πℏ
  e+G ≈

1

c
(

mR2

πℏc
)  e+G . (16) 

  
For the decay of a nucleus of charge number Z = Z1 + Z2  into a daughter nucleus of 
charge number Z1 and an α-particle of charge number Z2 = 2, the Gamow factor is 
 

              G(E) ≃ π (
2m

ℏ2 )

1

2
(

Z1Z2e2

4πε0
) 

1

√E
 (17) 

 
where E is the energy of the α-particle; m its mass.  


