
QUANTUM MECHANICS A (SPA 5319)

Introduction

(1) Arguments Leading to Schrödinger’s Equation.

We will begin this module with a quick review of the basic ideas of quantum
mechanics. Some of these you should have learned from Quantum Physics in
your first year, but I will present them in my own way, adding some additional
concepts as we proceed. Students often feel that Quantum Mechanics comes from
thin air, but this is far from true: the theory was arrived at through an enormous
intellectual struggle, driven by a truly remarkable range of experiments. Your first
year of formal study and your own reading of the history of 20th century physics
should by now have given you a full appreciation of how the ideas developed
through physicists attempts to understand the experimental facts. Today there
is no more successful theory in all of science, providing explanations for many
long-standing as well as new mysteries of nature. One of the aims of this course
is to show you some examples of these explanations; a second aim is to provide
you with the concepts, language and techniques to enable you to carry out or
understand simple applications of the theory; finally, I wish to lay down the
groundwork for you to proceed further in the subject either on your own or in
subsequent courses.

I will begin my simplified version of the story with Plancks idea that electro-
magnetic radiation is emitted and absorbed as quanta of energy,

E = hν = ~ω where ~ = h/2π . (1)

He was reluctantly forced to this in his successful attempt to fit the new experi-
ments (1900) of Lummer & Pringsheim and Rubens & Kurlbaum on black body
radiation. It was Einstein (1905) who grasped the significance of the idea when
he applied it to the photoelectric effect: Plancks quanta are particles of light,
later named photons. His predictions were beautifully confirmed in Millikans
experiments (1916). Comptons experiments (1923) on the scattering of X-rays
by electrons provided an important step forward when he successfully explained
his results by treating the X-rays as relativistic zero mass particles Einsteins
photons colliding with electrons. Of course in this period of history Rutherfords
nuclear atom and Bohrs model had added further puzzles which could not be
solved by classical physics.

At this stage in the story electromagnetic radiation seems to be playing a dual
role: in some experiments, such as interference and diffraction, it undoubtedly



behaves like waves; in others it behaves like particles. These particles must be
massless to travel at the velocity of light, with the momentum given by Einsteins
relativistic formula:

E =
√
p2c2 +m2c4 (2)

= pc for m = 0 (i.e. for photons) (3)

If we combine this with Plancks formula E = hν = ~ω and use the expression
ν = c/λ for the wavelength we discover an expression for the momentum in terms
of wavelength,

p =
h

λ
= ~k (4)

where k = 2π/λ is the usual definition of wave number. In his doctoral thesis de
Broglie (1923) made a very simple but profound conjecture: if waves can behave
like particles, perhaps particles such as electrons, protons and even atoms can
behave like waves. If so, what wavelength would they have? In his reasoning De
Broglie understood clearly that some of the expressions above apply only to zero
mass particles, so he took as his starting point the expression for all particles

p =
h

λ
= ~k (5)

This gives a relation between the momentum p, a particle-like property, and a
wave-like property, the wavelength λ (or equivalently the wave number, k). Once
we accept this we can find the energy (or equivalently the angular frequency, ω,
defined by E = ~ω) from Einsteins relativistic formula for massive particles:

E =
√
p2 +m2c4 (6)

= ~ω (7)

Note that ω is defined by this expression by analogy with a photon. A plane
monochromatic de Broglie wave, with wave number and frequency {k, ω} would
therefore describe a beam of monoenergetic electrons with momentum and energy
{p, E} given by the boxed expressions. With this simple, even naive, idea de
Broglie had made a definite experimentally verifiable prediction: diffraction and
interference effects should be seen with beams of electrons, protons or even atoms;
moreover the prediction was quantitative and could be experimentally tested in
full detail. Indeed this was first done with electron beams by Davisson & Germer
(1927) and completely independently by G.P. Thomson (1928); subsequent years
have seen many confirmations using proton, neutron and atomic beams, leading
to many practical uses in science and industry.

If matter can behave like waves, then one assumes that a monochromatic de
Broglie waves amplitude Ψ(x, t) can be represented by an expression just like
that of classical running waves:

Ψ(x, t) = cos(kx− ωt) = cos((px− Et)/~) (8)



or, in complex notation,

Ψ(x, t) = ei(kx−ωt) = ei(px−Et)/~ (9)

In both cases we have used de Broglies relations to translate the wave-like pair
(k, ω) to the particle-like pair (p, E). At this juncture two questions immediately
come to mind:

Question (1): What is the wave equation for de Broglie waves? Is it our old
friend the classical wave equation?

∂2Ψ

∂x2
− 1

v2
∂2Ψ

∂t2
= 0 (10)

Question (2): What physical quantity does the wave function Ψ(x, t) represent?
In the case of sound waves it would represent the longitudinal displacement of
the molecules from their equilibrium positions; for surface water waves or waves
on a string it would be the transverse displacement of the waters surface or of
the string; for electromagnetic waves it would stand for the components of the
electric and magnetic fields constituting the wave.

Answer to Question (1): Assume the classical wave equation and ask for any
of the above plane waves to be a solution. Substitution into the equation then
gives the condition for Ψ to be a solution:(

−p
2

~2
+

1

v2
E2

~2

)
Ψ(x, t) = 0 (11)

Notice that this follows whichever of the above forms for Ψ, real or complex, we
use. Since this equation must hold for all (x, t), the only possibility is that the
bracketed factor vanish, leading to(

−p
2

~2
+

1

v2
E2

~2

)
= 0 (12)

i.e.

p2 +
1

v2
E2 = 0 (13)

or
E = pv (14)

where we have taken the positive square root. This is only correct for a zero mass
particle with v = c, but for a massive relativistic one we require E2 = p2c2+m2c4.



Its easy to see what modification is needed to get this relativistic formula: just
add an extra term to generate m4c4 and replace v2 by c2,

∂2Ψ

∂x2
− 1

c2
∂2Ψ

∂t2
− m2c2

~2
Ψ = 0 (15)

Substitution of our plane monochromatic Ψ then gives, as before,(
−p

2

~2
+

1

c2
E2

~2
− m2c2

~2

)
= 0 (16)

ie.

−p2 +
1

c2
E2 −m2c2 = 0 (17)

or
E =

√
p2c2 +m2c4 (18)

where we have again taken the positive square root. This equation is indeed
correct for a massive relativistic particle. It is known as the Klein-Gordon equa-
tion (1926) and is used in relativistic quantum mechanics1. But we are seeking a
non-relativistic equation, where the rest mass energy is fixed and plays no role,
so that the interesting part of a free particles energy is just its kinetic energy,
henceforth also called E,

E =
1

2
mv2 =

p2

2m
(19)

Its clear that the wave equation that generates such an equation, by the sub-
stitution procedure we performed above, must have a double derivative in x to
generate the p2 factor, but only a single derivative in time to generate only one
power of E. A minimally modified version of the wave equation is then:

∂2Ψ

∂x2
+ A

∂Ψ

∂t
= 0 (20)

whereA is a constant to be determined. Now we demand that our plane monochro-
matic free particle Ψ be a solution. We immediately see that the cos doesnt
work as a solution because, although the spatial second derivative generates the
cos again, the first time derivative generates a sin from the cos. However the
complex exponential form is perfectly designed for the job because no matter
how many derivatives we take we still generate only the exponential. Thus for
Ψ = exp{i(px− Et)/~} to be a solution we require:(

−p
2

~2
− iAE

~

)
Ψ(x, t) =

(
−p

2

~2
− iAE

~

)
ei(px−Et)/~ = 0 (21)

1The Klein-Gordon equation has its problems, however. It has negative energy solutions
(the ± sign in taking the square root), which only get a proper interpretation in quantum field
theory with creation and annihilation of particles and antiparticles.



Notice the appearance of the imaginary i. Thus for this Ψ to be a solution we
require the factor in brackets to vanish,

−p
2

~2
− iAE

~
= 0 giving E = − p2

iA~
(22)

To get the correct non-relativistic kinetic energy requires iA~ = −2m, or A =
2mi/~, which gives the equation

∂2Ψ

∂x2
+ i

2m

~
∂Ψ

∂t
= 0 (23)

or, multiplying by ~2/2m to make all terms have the dimensions of [energy][Ψ],
we obtain the Schrödinger equation (1925) for a free non-relativistic particle of
mass m:

− ~2

2m

∂2Ψ

∂x2
= i~

∂Ψ

∂t
(24)

The final step is to determine the generalisation for the same particle moving
in a potential field V (x, t). As the energy is now kinetic plus potential energy,
E=KE+PE, we need to obtain

E =
1

2
mv2 + V (x, t) =

p2

2m
+ V (x, t) . (25)

We immediately see that the above manipulations would give this expression with
our complex Ψ if we simply added a term VΨ:

− ~2

2m

∂2Ψ

∂x2
+ V (x, t)Ψ(x, t) = i~

∂Ψ

∂t
TDSE (26)

This is the time-dependent Schrödinger equation (hereafter TDSE)2 and plays
the same fundamental role in quantum mechanics as Newtons Second law plays
in classical mechanics: it determines the time evolution of the system and has
the status of a postulate. It is assumed to be true but can never be proved to
be true; because of its immensely successful application in understanding many
experimental results, both qualitatively and quantitatively, we have every reason
to accept it as an excellent approximation to the true law of Nature. The ar-
guments I have given are only meant to provide some idea how one might have
arrived at this equation through some reasoning process, to convince you that it
does not simply come out of thin air. The actual historical process was in fact

2In 3-dimensions the TDSE is − ~2

2m∇
2Ψ(r, t) + V (r, t)Ψ(r, t) = i~∂Ψ(r, t)/∂t or,written out

fully in cartesian coordinates, with r = (x, y, z),

− ~2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

)
+ V (r, t)Ψ(r, t) = i~

∂Ψ(r, t)

∂t
.



rather more complicated and indirect!

(2) The Superposition principle.
In general there are many, often infinitely many, independent solutions, Ψi(x, t),

to the time-dependent Schrödinger equation. Because the TDSE is linear and ho-
mogeneous, any linear combination of these solutions is also a solution:

Ψ(x, t) =
∑
i

ciΨi(x, t); (27)

indeed, this is the most general solution, a fact familiar to you from your study
of classical waves. This property is the source of the most unexpected (non-
classical) aspects of quantum mechanics where particles behave like waves, can
tunnel through forbidden barriers, where cats may be both alive and dead, and
where so-called ghostly instantaneous interactions appear to take place over large
distances. The interpretation (and sometimes, misinterpretation) of these phe-
nomena arises from the physical interpretation of the wave function.

(3) The Born (or Probability) Interpretation of the Wave Function.
Answer to Question (2): The question of the physical significance of the
wave function Ψ(x, t) caused some considerable difficulties, and even today is not
completely settled. It was Max Born (1926) who was finally led to the currently
accepted and hugely successful Born interpretation or probability interpretation
of the wave function:

In 1 dimension |Ψ(x, t)|2dx is the probability that a measurement at time t
of the particles position will yield a value between x and x+ dx (figure 1a).

Figure 1a: The Born interpretation in one dimension.

In 3 dimensions |Ψ(r, t)|2dV is the probability that a measurement at time t of
the particles position will yield a value lying in the volume element dV at position
r, where dV = d3x = dxdydz in cartesian coordinates (figure 1b).



Figure 1b: The Born interpretation in three dimensions.

So, in general, the (always real) modulus squared of the complex wave function
gives us a probability density function for the detection of a particle.

(4) The Time Independent Schrödinger Equation (TISE).
An important special case often encountered in elementary, as well as ad-

vanced applications of quantum mechanics is that of the time independent po-
tential,

V (x, t) = V (x) (28)

In this special case we can solve for the time dependence of the wave function
Ψ(x, t) by a mathematical technique known as separation of variables. The way
to proceed is to notice that the time dependence and space dependence in the
time-dependent Schrödinger equation (TDSE) can be put on different sides of the
equation by searching for solutions of the form,

Ψ(x, t) = ψ(x)f(t) (29)

where the factors ψ(x) and f(t) are to be found by demanding that this form be
a solution to the TDSE. After dividing both sides of the equation by Ψ(x, t) =
ψ(x)f(t), then moving all functions of x to the left-hand side and all functions
of t to the right-hand side, we obtain

− ~2

2m

1

ψ(x)

d2ψ(x)

dx2
+ V (x) = i~

1

f(t)

df(t)

dt
(30)

Now this equation must be true for all values of the independent variables x and
t; this means that for any chosen t, we may choose x to have any value whatever,
and the equation must still be satisfied. But the left-hand side of the equation
is a function of x alone; the right a function of t alone. For them to be equal for



any pair (x, t) whatever, they clearly cannot vary, i.e. they are constant3. Since
both sides have the dimensions of V (x), ie. of energy, we call this constant E:

− ~2

2m

1

ψ(x)

d2ψ(x)

dx2
+ V (x) = i~

1

f(t)

df(t)

dt
= E (31)

Thus, we obtain an easily solved equation for f(t):

df

dt
= −i~Ef(t) (32)

which can be integrated to give

f(t) = Ae−iEt/~ (33)

where A is the integration constant. We have now discovered the full time-
dependence of the wave function:

Ψ(x, t) = ψ(x)e−iEt/~ , (34)

where we have absorbed the constant A into ψ(x). Going back to the separated
equation above we also see that ψ(x) must obey the time-independent Schrödinger
equation (TISE):

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (35)

This equation has the form of an eigenvalue equation:

Ĥψ(x) = Eψ(x) (36)

where Ĥ is a (differential) operator, the Hamiltonian operator,

Ĥ = − ~2

2m

d2

dx2
+ V (x) (37)

The action of this operator on ψ(x) is not to change the form of the function,
but merely to multiply it by a constant E, the energy eigenvalue it extracts
the energy when acting on ψ(x). Of course, as only particular functions can be
solutions to the TISE, depending on the value of E, we should really label these
solutions with E,

ψ(x) = ψE(x) (38)

where ψE(x) is known as the (energy) eigenfunction of the operator Ĥ belonging
to the (energy) eigenvalue E. We will shortly discover that the Hamiltonian

3Choose a pair of values x, t for which the right-hand side equals the left. Now, keeping t
fixed at this value, change x to any other value you like. Clearly if the left-hand side varies
with x it will change its value and no longer be equal to the right side; so it must be a constant,
and therefore so too must the right side since they are equal.



operator Ĥ is the operator representing energy in quantum mechanics, and its
eigenvalues E are the only possible results of an energy measurement.

(5) Consequences of the Born Interpretation of the Wave Function.
The Born interpretation of the wave function is expressed above in terms of

an infinitesimal portion dx of the x-axis; the probability of finding the particle
between two points a and b separated by a finite distance is simply the sum of
the probabilities,

Pab(t) =

∫ b

a

|Ψ(x, t)|2dx (39)

If a wave function Ψ(x, t) describes the state of a single particle, then we are
certain to find the particle somewhere, i.e. the probability for finding it anywhere
on the x-axis is 1: ∫ ∞

−∞
|Ψ(x, t)|2dx = 1 (40)

In three dimensions this becomes,∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Ψ(r, t)|2d3x = 1 (41)

This is known as the normalisation of the wave function: any proper single-
particle wave function must be normalised (to 1).

The Born interpretation implies a profound change in our concept of measure-
ment. The wave function is meant to encode all that we know about the system
in quantum mechanics; the Born interpretation tells us that a measurement of
position does not lead to a unique or definite result, but only to one of an infinite
set of possible results. What is definite is the probability of obtaining a particular
result; its just like throwing a dice: each throw of the dice yields a definite result,
although we only know after the throw what the actual result is. A particular
result (say a 5) has a probability of 1/6, and this is all we can say before the
throw is made. Similarly, if we prepare the system in the quantum state Ψ(x, t)
then we can only predict the probability of a given result for a position mea-
surement (|Ψ(x, t)|2dx for the result to lie between x and x + dx); but once the
measurement has been made then we know where the particle is at time t of the
measurement.

Suppose we had computed the wave function and wished to check our calcula-
tion against experiment. The Born interpretation tells us that our wave function
only allows us to predict probabilities. These probabilities can only be determined
experimentally by doing very many (in principle infinitely many) repetitions of
the measurement, each time preparing the system anew in the same state Ψ(x, t)
before repeating the measurement. This corresponds to the process of checking
whether a dice is biassed, i.e. what the probabilities are for the various out-
comes and whether they are equal: we would have to throw the dice infinitely



many times and compare the relative frequencies of the different outcomes; these
are proportional to the probabilities of the different outcomes and if they are
equal, the dice is unbiassed. Preparation of the system is like throwing the dice;
measuring position is like looking at the dice when its landed and noting the out-
come. Just as with any repeated measurement, we can compute the average of
all the individual measurements: the weight of each value of x is its probability,
|Ψ(x, t)|2dx, and the average is obtained by summing over all the possibilities,

〈x〉 =

∫ ∞
−∞

x|Ψ(x, t)|2dx (42)

Note that we did not divide by the integral of |Ψ|2 because the wave function
is normalised. The quantity 〈x〉 is often called the expectation value for x; it
is usually written in an equivalent form resembling that for other quantum me-
chanical variables that are represented by operators where the order of factors is
important:

〈x〉 =

∫ ∞
−∞

Ψ∗(x, t)xΨ(x, t)dx (43)

The measurement process can either be performed as described above or by
preparing an infinite number of identical replicas of the system, each in the
same state Ψ, and measuring the position of every one; this collection of sys-
tems is known as an ensemble, and the interpretation of the wave function I have
described is known as the ensemble interpretation of quantum mechanics. (A
practical example of an ensemble is a beam of identical particles, all in the same
state). This is usually called the Copenhagen interpretation because it was the
one developed by Niels Bohr and his many collaborators, especially Heisenberg,
in Copenhagen during the 1920s. You should particularly notice that this inter-
pretation is rather careful not to identify Ψ with the state of a single system, but
with an ensemble; Ψ is the outcome of a preparation process and is our tool for
computing the probabilities of various results for individual measurements, and
the expectation values obtained in ensemble measurements.

In an ensemble measurement of the particles position we measure many dif-
ferent values of x and compute their average 〈x〉. The quantity |Ψ(x, t)|2dx gives
the probability for the result of a single one of these measurements lying between
x and x + dx; the expectation value 〈x〉 is then obtained by averaging all the
individual results. Since individual results differ from each other, we would like
to find a measure of the spread of these values about the mean. This is given by



the variance or uncertainty ∆x4:

∆x =
√
〈x2〉 − 〈x〉2 (44)

where

〈x2〉 =

∫ ∞
−∞

Ψ∗x2Ψdx (45)

We can interpret this as saying that the position of the particle is 〈x〉±∆x. I put
this statement in quotation marks because it is not really the position of a single
particle, but the average position of an ensemble of particles, each prepared in
the state Ψ. We can usefully think of our particle in state Ψ as smeared out over
this region 〈x〉±∆x, but you should be careful not to take this interpretation too
literally. Physicists usually loosely identify Ψ as the state of an individual system;
this works well enough in most situations, but is also a source of misconceptions
in others.

Let me illustrate the trouble caused by saying the particle is literally in the
state Ψ. Take the example of Youngs two-slit experiment using an electron beam.
Let the wave function for the electron arriving at position x on the screen after
going via slit 1 be Ψ1; via slit 2 be Ψ2. To explain why an electron beam produces
interference at the screen we need to write the wave function as Ψ = (Ψ1 +
Ψ2)/

√
2: the particle is equally likely to go through either slit. At the screen we

measure the number of electrons arriving at each point, which is proportional to
the probability of an electron arriving there5; this probability is proportional to

|Ψ|2 =
1

2
|Ψ1|2 + |Ψ2|2|+ 2Re(Ψ∗1Ψ2) . (46)

It is the cross-term - the real part, Re - which gives the constructive and destruc-
tive interference observed in the experiment; without the linear combination of
both Ψ1 and Ψ2 there would be no interference. We are tempted to conclude
that the state of a particle just before it arrives at the screen is in some sense
both Ψ1 and Ψ2; has the particle gone through both slits, half through slit 1; the
other half through slit 2? Surely not! The electron is not a particle that can be

4From laboratory measurements you may be familiar with the definition of the squared error
as the result of taking the difference between each measurement and the mean, squaring, and
then averaging:

∆x2 = 〈(〈x〉x)2〉 = 〈(〈x〉2 − 2x〈x〉+ x2)〉 = 〈x〉2 − 2〈x〉〈x〉+ 〈x2〉 = 〈x2〉 − 〈x〉2

This is therefore equivalent to the definition given in the text.
5Notice that the use of a beam amounts to an ensemble measurement of position on the

screen; if we had sent just one electron through the apparatus it would have arrived somewhere
on the screen, but on its own that would have told us virtually nothing about the probability
distribution |Ψ|2, and we would not have noticed the interference. Only by passing many
electrons through the apparatus, either in an intense beam or one at a time, can we get to see
the interference pattern.



broken up in that way: we have never seen such a division in any experiment and
have good reasons to believe that this is impossible: lepton number conservation,
quantisation of electric charge, no known particles with mass anywhere near one-
half the electron mass6. What then should we say? In the Copenhagen version
of quantum mechanics we refuse to identify Ψ as the actual state of a particular
particle and so we avoid saying that it went through both slits or either slit;
instead we take Ψ to represent the result of a preparation process (sending the
particle into the apparatus) which tells us the possible outcomes and probabilites
of a measurement process (detection at the screen); we cannot say which slit the
particle went through because we did not carry out an appropriate measurement
to investigate this - indeed we avoided doing so in order to measure an interfer-
ence pattern on the screen. To experimentally determine detailed information
about the wave function we must carry out an ensemble measurement, and so Ψ
represents the entire ensemble rather than a single member of the ensemble. In
practice we all loosely think of Ψ as representing the state of a single particle,
although we have to be careful when doing so. You should be aware that this
is a controversial aspect of quantum mechanics: there is so far no experiment
contradicting the Copenhagen interpretation - and I believe it derives its power
from the fact that is a rather conservative interpretation - but it makes many
people uneasy. Both experimental and theoretical research continues to explore
this crucial area of quantum mechanics.

(6) Physical Constraints on the Behaviour of the Wave Function: Bound-
ary Conditions.

(1) All physical systems we study are localized in some finite region of space, so
that the probability of finding the system at spatial infinity, x→ ±∞, is zero:

lim
x→∓∞

ψ(x) = 0 (47)

(2) As the probability interpretation requires that
∫
|ψ(x)|2dx = 1, which is fi-

nite, ψ(x) must be square integrable. This says that not only must the wave
function vanish at infinity (see (1) above) but it must vanish sufficiently rapidly.
(e.g. ψ ∼ 1/

√
x would fail this test.)

(3) As |ψ(x)|2 represents a physical probability density, it must have a unique
value, ie. be single-valued. This is usually taken to imply that ψ(x) be single-
valued, although there are cases, such as spin-half particles electrons, protons,

6Also, if we tried to check whether the electron went through one or both slits by putting
counters at the slits to detect the electron as it passed through on its way to the screen, quantum
mechanics – in the form of Heisenbergs uncertainty relation – would show that the pattern on
the screen is so smeared out as to remove any trace of interference.



quarks, etc. where the wave function is double-valued.

(4) ψ(x) must be continuous everywhere, otherwise |ψ(x)|2 would not have a
unique value and could not represent a physical probability density.

(5) The derivative, dψ/dx, must be continuous everywhere. This implies that
there are no kinks in ψ(x). If this were not the case then d2ψ/dx2 would be
infinite, thereby contributing an infinite term to the Schrödinger equation where
all other terms are finite. An exception to this rule occurs at points where the
potential is infinite, such as the boundaries of the escape-proof box. But note
that at such points the wave function itself must still be continuous because of
its probability interpretation see (4) and so it only acquires a kink. At points
where the potential is finite, but discontinuous, the second derivative of ψ(x) will
be discontinuous, although the first derivative will still remain continuous. At
points where the wave function enters a classically forbidden region the second
derivative changes sign this is a point of inflexion because the sign of E − V (x)
changes there.

(7) Potentials and Forces.
Before we launch into the detailed study of quantum effects in various idealised

potentials we first discuss the physical meaning of potentials and the relationship
between idealised and more realistic potentials. First recall the relation between
force and potential: in one dimension the force in the x-direction is

Fx = −∂V (x, t)

∂x
, (48)

so the slope of the potential tells us how strong the force is. The potential
shown in Figure 2a depicts an idealised potential with a vertical side where the
slope is infinite and therefore so is the force. This cannot represent a physical
potential, which must be continuous to give a finite force; of course it acts over
zero distance and so does produce a finite effect on a particle. This potential
therefore represents an idealisation of the more realistic potential illustrated in
Figure 2b where the side now varies smoothly. The corresponding forces are
shown in both figures: here the forces only act near the walls of and are zero
elsewhere. These impulsive forces would act to confine a particle of low enough
energy: if a (classical) particle approaches the step from the right it will feel a
force pushing it back to the right (Fx positive): the particle has been accelerated
to the right by interaction with the step. We say that the particle has been
scattered by the potential. In quantum mechanics the quantum state of such a
particle would be called a scattering state. When is an idealised potential with
vertical sides a reasonable approximation to a more realistic smoothly varying
one? To understand how to think about this question let us use our knowledge
of the behaviour of a classical water wave when it meets an obstacle. Provided



the obstacle is small enough, the wave will not be significantly affected by its
presence, i.e. provided the wavelength λ is very much larger than the size of
the obstacle. A quantum state in any well always has a characteristic oscillatory
behaviour for which we can estimate its de Broglie wavelength λ: for an idealised
potential with an abrupt edge replacing one with an edge varying more smoothly
but still rapidly over a distance δx (Figure 3) we require

λ� δx (49)

In this way, just as in the case of the water wave, the quantum state will not be
changed significantly by using an abrupt potential approximation: the de Broglie
wave will not notice the difference.

Figure 2: An idelaised potential and resulting delta function force.

Figure 3: A realistic potential and a corresonding finite magnitude force.



(8) The Infinite Square Well (or the Escape-Proof Box) in 1-Dimension.
To remind you of the role played by the above conditions on the wave function,

let us solve the familiar infinite square well problem. The potential V (x) is time-
independent, so the wave function for a given energy (energy eigenfunctions) have
the form obtained in Section 4:

Ψ(x, t) = ψ(x)e−iEt/~ (50)

Our aim is to find the energy eigenvalues E and the corresponding eigenfunctions
ψ(x) by solving the time-independent Schrödinger equation (TISE):

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (51)

For the infinite square well the particle of mass m is confined to the region
−L/2 < x < +L/2; it cannot escape from that region because it cannot sur-
mount the infinitely high potential barriers at the ends: V (±L/2) = ∞. Physi-
cally, this means there is zero probability of finding the particle outside the box;
mathematically this is expressed as

ψ(x) = 0 for x ≤ −L/2 andfor x ≥ +L/2 (52)

As the potential is constant inside the box we take V (x) = 0 there. The wave
function inside the box is therefore given by solving the TISE:

− ~2

2m

d2ψ(x)

dx2
= Eψ(x) (53)

A simple rearrangement gives

d2ψ(x)

dx2
= −k2ψ(x) , (54)

where

k =

√
2m

~2
E , (55)

and is real because E > 0 (it cannot be less than the bottom of the well). Math-
ematically this differential equation is of the classical simple harmonic oscillator
form and therefore the general solution is a linear combination of sin and cos7,

ψ(x) = A cos(kx) +B sin(kx) (56)

The boundary conditions at x = ±L/2 determine the constants A, B and the
energy eigenvalue. From Section 6 we know that the wave function must be

7We could equally well use complex exponentials ψ(x) = aeikx + be−ikx. This is equivalent
to our choice because its just a linear combination of the sin and cos. Our choice is more
convenient for imposing the boundary conditions.



continuous everywhere: in particular, at x = ±L/2 the wave function must
vanish to match its value just outside the well8:

ψ(x = −kL/2) = A cos(kL/2)−B sin(kL/2) = 0 (57)

ψ(x = +kL/2) = A cos(kL/2) +B sin(kL/2) = 0 (58)

Adding and subtracting these equations gives two simple conditions:

A cos(kL/2) = 0 (59)

B sin(kL/2) = 0 (60)

To find all possible solutions we must explore all the possibilities; since the sin
and cos cannot both vanish, there are just two cases:

(A) A 6= 0, B = 0: the second equation is then satisfied, while the first equation
demands that cos(kL/2) = 0, i.e. kL/2 = nπ/2 for n odd; this gives energy
quantisation:

E = En = n2 π
2~2

2mL2
for n = 1, 3, 5, (61)

ψn(x) =

√
2

L
cos(nπx/L) (62)

The constant A =
√

2/L was determined by normalising the wave function.

(B) B 6= 0, A = 0: the first equation is then satisfied, while the second equation
demands that sin(kL/2) = 0, i.e. kL/2 = nπ/2 for n even; this gives energy
quantisation:

E = En = n2 π
2~2

2mL2
for n = 2, 4, 6, (63)

ψn(x) =

√
2

L
sin(nπx/L) (64)

The constant B =
√

2/L was determined by normalising the wave function. The
solutions are summarised in the following two pages.

A comment: Notice that the energy eigenstates ψn(x) are either even functions
of x, ψn(x) =

√
2/L cos(nπx/L), with ψn(−x) = +ψn(x) or odd functions of

x, ψn(x) =
√

2/L sin(nπx/L) with ψn(−x) = −ψn(x). We say that the energy
eigenstates have definite parity: even functions are called positive parity (or +1);

8We do not match the derivatives because the potential is infinite at x = ±L/2: there is a
kink in the wave function at these points. See Section 6 for a discussion.



odd functions negative parity (or -1). This is a consequence of the symmetry of
the potential about our chosen origin V (−x) = V (x) see later for a proof. If
we had chosen our origin of coordinates not to be at the centre of the well (the
symmetry point), but somewhere else such as the left-hand end of the well, this
would have made the definite parity of the eigenstates less apparent (until we
plotted them), although we can then use a single function to represent them all.
Let us choose a new coordinate system x′, with the well running from x′ = 0→ L.
The relationship between our original coordinate system and this new one is,

x = x′ − L

2
(65)

Substituting for x in our expressions for the eigenstates then yields,

ψn(x′) =

√
2

L
sin(nπx′/L) forall n = 1, 2, 3, (66)

Here we used the following identities,

sin(nπx′/L− nπ/2) = ± sin(nπx′/L) for n even (67)

cos(nπx′/L− nπ/2) = ± sin(nπx′/L) for n odd (68)

We have then ignored the overall sign differences, as this does not change the
physics, which only depends of |ψ|2. This equivalent form of the eigenstates is
used in Problems 2.

The eigenfunctions, Ψn(x, t), specified by the quantum number n correspond
to the energy eigenvalues

En =
n2π2~2

2mL2
n = 1, 2, 3, (69)

Note that the even functions of x (parity +1) have n odd; the odd functions
(parity -1) have n even.

Ψ1(x, t) =
√

2
L

cos(πx/L)e−iE1t/~ E1 =
2π2

2mL2 (70)

Ψ2(x, t) =
√

2
L

sin(2πx/L)e−iE2t/~ E2 = 42π2

2mL2 (71)

Ψ3(x, t) =
√

2
L

cos(3πx/L)e−iE3t/~ E3 = 92π2

2mL2 (72)

Ψ4(x, t) =
√

2
L

sin(4πx/L)e−iE4t/~ E4 = 162π2

2mL2 (73)

There are several noteworthy general features of these eigenstates; we will en-
counter these throughout the course:



(1) The ground state (i.e. the lowest energy state, n = 1) has non-zero energy.
This is a uniquely quantum mechanical effect - a consequence of Heisenbergs un-
certainty principle for a localized particle. Can you show this?

(2) The eigenstates are either odd or even functions of x; i.e. ψ(−x) = ±ψ(x).
Thus the ground state (n = 1) is even; the first excited state (n = 2) is odd; the
second excited state (n = 3) is even; etc. We will discover later that this is a
consequence of a symmetry of the potential, V (−x) = V (x).

(3) Eigenstates corresponding to different energies are orthogonal:∫ ∞
−∞

ψ∗n(x)ψm(x)dx = 0 for n 6= m (74)

Can you show this explicitly for a few of the infinite square well eigenstates9?
We can combine this with the normalisation condition into the orthonormality
condition: ∫ ∞

−∞
ψ∗n(x)ψm(x)dx = δnm , (75)

where δnm is the Kronecker delta symbol (= 1 for n = m, = 0 for n 6= m).

(4) The most general solution, Ψ(x, t), to the time-dependent Schrödinger equa-
tion (TDSE) for the infinite square well is a linear superposition of these eigen-
states:

Ψ(x, t) =
∞∑
n=1

cnΨn(x, t) , (76)

where cn are constants and the time-dependent energy eigenstates are

Ψn(x, t) = ψn(x)e−iEnt/~ (77)

You may wonder about the physical significance of a state Ψ, which does not have
a definite energy: what does it mean? This question is at the heart of quantum
mechanics and will be addressed at various stages in the course.

(9) Momentum in Quantum Mechanics.
Our next task is to find a definition for the momentum variable in quantum

mechanics. This may seem obvious because according to de Broglie, by analogy
with a classical monochromatic plane wave, a free particle of momentum p = ~k
and energy E = ~ω has a wave function:

Ψ(x, t) = Nei(kx−t) = Nei(px−Et)/~ (78)

9To perform the integrals use the trigonometric identities cosA cosB = 1
2 (cos(A − B) +

cos(A+B)) and sinA sinB = 1
2 (cos(A−B)− cos(A+B)).



where N is a normalisation constant. So far so good; but we now face a diffi-
culty: The de Broglie wave has a constant probability density, |Ψ(x, t)|2 = N2,
presumably representing a particle (or particles) that are equally likely to be
found anywhere in space, but is therefore not normalisable,∫ ∞

−∞
|Ψ(x, t)|2dx =∞ (79)

The de Broglie wave is actually an idealization, just as a plane monochromatic
light wave is. To represent a more realistic situation such as a finite wave train or
a particle localised in some finite region of space ∆x say we need to construct
a wave packet by superimposing infinitely many de Broglie waves of different
wavelengths (or momenta). A typical wave packet will then have a whole range
of wavelengths or momenta ∆p, with a single de Broglie wave being a typical
representative of those making up the packet. Now, we know that a wave packet
made up from a superposition of a range of wave numbers ∆k has a width ∆x
given by the bandwidth theorem:

∆k∆x ' π (80)

Our quantum mechanical wave packet will have the same property, where p = ~k.
Multiplying the bandwidth relation by ~ gives the uncertainty relation,

∆p∆x ' π~ (81)

This is Heisenbergs uncertainty relation, which can be shown to have the precise
form:

∆p∆x ≥ ~
2

(82)

This is an expression of and a consequence of the wavelike nature of quantum
mechanical particles. Since both the position and momentum of the wave packet
do not have definite values, but have a spread, we call ∆p and ∆x the uncertainties
in momentum and position.

Notice that we have already learned how to compute the position uncertainty
from the wave function: we first compute the averages (or expectation values)
〈x〉 and 〈x2〉 and hence obtain the position uncertainty

∆x =
√
〈x2〉 − 〈x〉2 (83)

The natural question now arises: how might we compute from the wave function
the corresponding momentum expectation values, 〈p〉 and 〈p2〉 and hence obtain
the momentum uncertainty:

∆p =
√
〈p2〉 − 〈p〉2 ? (84)



The answer is surprising: just as 〈x〉 is given by the averaging procedure

〈x〉 =

∫ ∞
−∞

Ψ∗xΨdx , (85)

so the momentum average is obtained from

〈p〉 =

∫ ∞
−∞

Ψ∗p̂Ψdx , (86)

where p̂ is a differential operator operating on the wave funtion to its right:

p̂ = −i~ ∂
∂x

(87)

How can we possibly justify this apparently bizarre idea that a dynamical variable
is represented by an operator? In the Quantum Mechanics B course this question
will be studied in greater depth, but here we simply provide some evidence.

(a) For a single de Broglie wave this momentum operator p̂ extracts its mo-
mentum: the de Broglie wave is an eigenstate of the momentum operator with
eigenvalue p (not p̂, note!):

p̂Ψ(x, t) = −i~ ∂
∂x
ei(px−Et)/~ = pei(px−Et)/~ (88)

i.e.
p̂Ψ(x, t) = pΨ(x, t) (89)

This seems eminently reasonable and makes equal sense when used to find the
average momentum of a wave packet (see QMB).

(b) There is apparently no sign of the momentum p in the energy eigenstates for
the infinite square well:

Ψn(x, t) =

√
2

L
cos(nπx/L)e−iEnt/~ n = 1, 3, 5, (90)

but we can unscramble this by writing the cosine as a combination of complex
exponentials and then combining these with the timedependent exponential to
obtain a highly suggestive form:

Ψn(x, t) =

√
2

L

1

2

{
ei(px−Ent)/~ + ei(−px−iEnt)/~

}
(91)

where we have written

p =
n~π
L

(92)



We now recognise the two terms as de Broglie waves of momentum respectively
p = +n~π/L running to the right and momentum −p = −n~π/L running to the
left. They have equal amplitudes. You should now recall the normal models of
vibration of a string fixed at its ends: there, too, you found that the standing
waves (or normal modes) are made up of precisely the same superposition of run-
ning waves which reflect repeatedly from the fixed ends. They combine (interfere)
to make a standing wave packet. Similarly, the eigenstates of the infinite square
well the escapeproof box are wave packets made up from the superposition of
just two de Broglie waves of equal and opposite momenta. The state itself does
not have a definite momentum: it has a spread of two momenta +p and −p, so
its average momentum is zero and its momentum uncertainty is of order ∆p ' 2p
or, equivalently,

∆p ' 2n~π
L

(93)

with
〈p〉 = 0 (94)

Let us see if we can use our operator representation of momentum to confirm
these reasonable estimates; success will be evidence in favour of our choice of the
momentum operator. First the average for the n-th eigenstate:

〈p〉 =

∫ +L/2

−L/2
Ψ∗p̂Ψdx , (remember Ψ = 0 outside the box) (95)

= −i~ 2

L

∫ +L/2

−L/2
cos
(nπ
L
x
) ∂

∂x
cos
(nπ
L
x
)
dx (96)

= i~
2

L

nπ

L

∫ +L/2

−L/2
cos
(nπ
L
x
)

sin
(nπ
L
x
)
dx (97)

hence
〈p〉 = 0 (98)

The integral vanishes because, (a) the integrand is odd, being a product of an even
and odd function of x (cos and sin), and (b) the integration range is symmetric
about zero (−L/2→ +L/2). This confirms our expectation and suggests we are
on the right track. Now for 〈p2〉:

p̂2 = −~2 ∂
2

∂x2
(99)



so

〈p2〉 =

∫ ∞
−∞

Ψ∗p̂2Ψdx = −~2 2

L

∫ +L/2

−L/2
cos
(nπ
L
x
) ∂2

∂x2
cos
(nπ
L
x
)
dx (100)

= ~2
2

L

(nπ
L

)2 ∫ +L/2

−L/2
cos2

(nπ
L
x
)
dx (101)

= ~2
2

L

(nπ
L

)2 1

2

∫ +L/2

−L/2

(
1 + cos

(
2nπ

L
x

))
dx (102)

(as cos2 θ =
1

2
(1 + cos 2θ))

= ~2
2

L

(nπ
L

)2 1

2

[
x+

L

2nπ
sin

(
2nπ

L
x

)]+L/2
−L/2

(103)

= ~2
2

L

(nπ
L

)2 1

2
[L+ 0] (as sin(±nπ) = 0) (104)

hence

〈p2〉 =

(
n~π
L

)2

(105)

Hence, finally we can compute the momentum uncertainty for the n-th eigenstate:

∆p =
√
〈p2〉 − 〈p〉2 =

√(
n~π
L

)2

− 0 (106)

i.e.

∆p =
n~π
L

(107)

only differing by a factor 2 from our rough estimate given previously. We could
now compute the position uncertainty ∆x for this state, and check whether the
result is consistent with Heisenbergs uncertainty relation for momentum and
position. The results are:

〈x〉 = 0 (as the integrand is odd in x) (108)

and

〈x2〉 =
L2

4

(
1

3
− 2

n22

)
(109)

so

∆x =
L

2

√
1

3
− 2

n2π2
(110)

As the negative term in the square root is largest for n = 1 (remember n is odd
here),

∆x ≥ L

2

√
1

3
− 2

2
= 0.36

L

2
(111)



We therefore obtain a result consistent with Heisenbergs uncertainty relation,

∆p∆x ≥ 0.36π
~
2

= 1.14
~
2
>

~
2

(112)

where we have used the fact that n ≥ 1 for odd n to conclude that

∆p =
n~π
L
≥ ~π

L
(113)

As a useful way of studying and understanding the above you should repeat these
calculations for the odd parity eigenstates of the escapeproof box:

Ψn(x, t) =

√
2

L
sin
(nπx
L

)
e−iEnt/~ n = 2, 4, 6, (114)

The results are identical except that for these negative parity states n is now
even.

Notice how the position uncertainty depends only very weakly on n and ap-
proaches quite rapidly the value

∆x =
L

2

√
1

3
' 0.3L (115)

As we would expect, it is some fraction of the size of the box to which the particle
is confined it certainly couldnt be greater than L. Recall that the uncertainty
tells us to think of the average position as

〈x〉 ±∆x (116)

From experiments you have done in the laboratory you might expect to find the
particle within the range 2∆x centred about the average 〈x〉 about 68% of the
time. In fact this is nearly true the for the ground state (n = 1) where the figure
is 65%; for n = 2, 3, 4, 5, 6 it is 56, 47, 51, 60, 62%. In fact only for a Gaussian
distribution is the figure 68%, and the escapeproof probability distributions |Ψn|2
are not Gaussian.

In contrast to the position uncertainty, the momentum uncertainty increases
with n because the two superimposed de Broglie waves constituting the eigen-
states have momenta proportional to +n and −n; therefore their separation is
proportional to 2n. We already noted this before in our rough estimate of ∆p;.
Thus, as a reasonably good approximation, for the nth eigenstate,

∆p∆x ' n

(
π

√
1

3

)
~
2

= 1.8n
~
2
>

~
2

(117)

As always, this obeys Heisenbergs uncertainty relations.


