
QUANTUM MECHANICS A (SPA-5319) 

 
Time Evolution and the Expansion Theorem 

 

Earlier in the course we found that for a time independent potential we can solve the 

time-independent Schrödinger equation: 

𝐻̂𝜓 = 𝐸𝜓  

and obtain the set of energy eigenstates Ψ𝑛(𝑥, 𝑡) = 𝜓𝑛(𝑥)𝑒−
𝑖𝐸𝑛𝑡

ℏ  , which have exactly known 

energies.  

We have already noted the superposition principle: mathematically this is a 

consequence of the Schrödinger equation’s linearity in . For all potentials of physical 

interest it can be proved that the most general solution of the TDSE can be written as a linear 

combination of energy eigenstates, namely: 

Ψ(𝑥, 𝑡) = Σ𝑛 𝑐𝑛 𝜓𝑛(𝑥)𝑒−
𝑖𝐸𝑛𝑡

ℏ  

We noted that these linear combinations, generally, are not stationary states (|Ψ|2 = 𝑓(𝑡)) 

nor do they have exactly defined energy (Δ𝐸 ≠ 0). 

This is the expansion theorem and it encodes an important implication of the time-

independent Schrödinger equation: even though quantum mechanics is indeterministic, the 

time–evolution of the wave function itself is deterministic. By indeterministic we mean that 

quantum mechanics can only predict the probability of a given outcome for a measurement; 

but the wave function is deterministic because, given the initial wavefunction, (x,0) 

(whatever this may be at t = 0), the TDSE precisely determines its evolution at times t > 0.  

The question immediately arises about how we would obtain the individual expansion 

coefficients, cm, for an arbitrary wavefunction (x,0) at   t = 0. As it happens, these are simply 

obtained by considering the wavefunction (x,0) at  t = 0 and the individual eigenstate whose 

coefficient we are interested in,  𝜓𝑚(𝑥). At zero time the linear combination simplifies to 

 Ψ(𝑥, 0) = Σ𝑛 𝑐𝑛 𝜓𝑛(𝑥). Multiplying by  𝜓𝑚(𝑥)∗, and integrating over all space, yields 

∫  𝜓𝑚(𝑥)∗Ψ(𝑥, 0)
∞

−∞

𝑑𝑥 = ∫ Σ𝑛 𝑐𝑛 𝜓𝑚(𝑥)∗ 𝜓𝑛(𝑥)
∞

−∞

 𝑑𝑥 

Using the fact that the energy eigenstates are orthonormal we obtain a general expression 

for the expansion coefficients: 

𝑐𝑚 = ∫  𝜓𝑚(𝑥)∗Ψ(𝑥, 0)
∞

−∞

𝑑𝑥 



Having found the expansion coefficients from this integral, we can then insert them into the 

expansion to find the wave function (x,t) at all later times t > 0, given that we already know 

the energy eigenvalues En belonging to each known eigenstate 𝜓𝑛(𝑥). However, there is a 

proviso: the wavefunction evolves according to this prescription provided the system is left 

undisturbed after the initial time t = 0. 

The complex expansion coefficients clearly play an important role in determining the 

wave function and its evolution. But what is their physical significance? We begin by 

calculating the expectation value of the energy, 〈𝐸〉,  for such a state: 

〈𝐸〉 =  ∫ Ψ(𝑥, 𝑡)∗
∞

=∞

𝐻̂Ψ(𝑥, 𝑡) 𝑑𝑥 

And obtain the result 〈𝐸〉 =  ∑ |𝑐𝑛|2𝐸𝑛𝑛  , thus the average energy is a weighted sum over all 

the energies, with the weighting |𝑐𝑛|2 for energy 𝐸𝑛. This suggests that |𝑐𝑛|2 is the probability 

that the energy 𝐸𝑛 will be the result of a measurement of energy for a particle in the state 

specified by the wave function Ψ(𝑥, 𝑡).  

Finally we are led to the key Measurement Postulate of quantum mechanics: For a 

particle in the quantum state 

Ψ(𝑥, 𝑡) = Σ𝑛 𝑐𝑛 𝜓𝑛(𝑥)𝑒−
𝑖𝐸𝑛𝑡

ℏ  

the only possible result of a single energy measurement is one of the eigenvalues 𝐸𝑛, with 

probability |𝑐𝑛|2. 

There is more to the Measurement Postulate: the ‘Collapse of the Wave Function’. If 

the energy measurement yields a result 𝐸𝑛 at time t, then immediately after the 

measurement the wave function ‘collapses’ to the corresponding eigenstate: 

Ψ(𝑥, 𝑡)𝑎𝑓𝑡𝑒𝑟 =  𝜓𝑛(𝑥)𝑒−
𝑖𝐸𝑛𝑡

ℏ  

All future measurements then yield the same value for the energy of the state. 

 


